
IBM Parallel Environment for AIX 5L

Operation and Use, Volume 1

Using the Parallel Operating Environment

Version 4 Release 2

SA22-7948-02

���

IBM Parallel Environment for AIX 5L

Operation and Use, Volume 1

Using the Parallel Operating Environment

Version 4 Release 2

SA22-7948-02

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 151.

Third Edition (April, 2005)

This edition applies to version 4, release 2 of IBM Parallel Environment for AIX 5L (product number 5765-F83) and

to all subsequent releases and modifications until otherwise indicated in new editions. This edition replaces

SA22-7948-01. Significant changes or additions to the text and illustrations are indicated by a vertical line (|) to

the left of the change.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or

you may address your comments to the following address:

 International Business Machines Corporation

 Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this book

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables . v

About this book . vii

Who should read this book . vii

How this book is organized . vii

Overview of contents . vii

Conventions and terminology used in this book . viii

Abbreviated names . viii

Prerequisite and related information . ix

Using LookAt to look up message explanations . ix

How to send your comments . x

National language support (NLS) . x

Summary of changes for Parallel Environment 4.2 . x

Chapter 1. Introduction . 1

PE Version 4 Release 2 migration information . 4

Chapter 2. Executing parallel programs . 7

Executing parallel programs using POE . 7

Step 1: Compile the program . 8

Step 2: Copy files to individual nodes . 9

Step 3: Set up the execution environment . 10

Step 4: Invoke the executable . 27

Controlling program execution . 34

Specifying develop mode . 34

Making POE wait for processor nodes . 35

Making POE ignore arguments . 35

POE argument limits . 36

Managing standard input, output, and error . 37

Determining which nodes will participate in parallel I/O 43

Checkpointing and restarting programs . 44

Managing task affinity on large SMP nodes . 46

Running POE from a shell script . 46

POE user authorization . 46

Cluster based security . 46

AIX/DCE based security (compatibility) . 47

Using DCE user authorization . 47

Using AIX user authorization . 48

Using POE with MALLOCDEBUG . 48

Using POE with AIX large pages . 48

Chapter 3. Managing POE jobs . 51

Multi-task corefile . 51

Using MP_BUFFER_MEM . 52

Specifying the format of corefiles or suppressing corefile generation 54

Generating standard AIX corefiles . 55

Generating corefiles for sigterm . 55

Writing corefile information to standard error . 55

Generating lightweight corefiles . 55

Stopping a POE job . 57

Cancelling and killing a POE job . 57

Detecting remote node failures . 57

Considerations for using the high performance switch interconnect 57

Scenarios for allocating nodes with LoadLeveler . 58

© Copyright IBM Corp. 1993, 2005 iii

Considerations for data striping, failover and recovery with PE 61

Submitting a batch POE job using IBM LoadLeveler . 68

Submitting an interactive POE job using an IBM LoadLeveler command file 70

Generating an output LoadLeveler job command file . 71

Running programs under the C shell . 72

Using MP_CSS_INTERRUPT . 73

Support for performance improvements . 75

Interrupt mode control . 75

Parallel file copy utilities . 76

Using RDMA . 76

Improving Application Scalability Performance . 77

POE priority adjustment co-scheduler . 77

AIX Dispatcher tuning . 79

Appendix A. Parallel environment commands 81

mcp . 82

mcpgath . 84

mcpscat . 88

mpamddir . 92

mpcc_r . 93

mpCC_r . 95

mpiexec . 97

mpxlf_r . 98

mpxlf90_r . 101

mpxlf95_r . 104

poe . 107

poeckpt . 125

poekill . 127

poerestart . 128

Appendix B. POE environment variables and command-line flags 131

MP_BUFFER_MEM details . 144

Appendix C. Accessibility . 149

Accessibility information . 149

Using assistive technologies . 149

Notices . 151

Trademarks . 153

Acknowledgments . 154

Glossary . 155

Index . 163

iv IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

||

||
||
||
||

||

Tables

 1. Conventions and terminology used in this book . viii

 2. Parallel Environment abbreviations . viii

 3. Compiling a program . 8

 4. Number of tasks in a parallel job and maximum number of tasks on a node. 11

 5. Execution setup summary (for an SP system or clustered server with LoadLeveler). 13

 6. Execution environment setup summary (for pSeries or RS/6000 network cluster or a mixed system whose

additional nodes are not part of the LoadLeveler cluster) 14

 7. Node allocation summary . 14

 8. Adapter/CPU default settings . 19

 9. Adapter/CPU use under LoadLeveler . 20

10. LoadLeveler node allocation . 26

11. Failover and recovery operations . 64

12. POE environment variables and command-line flags for partition manager control 132

13. POE environment variables/command-line flags for job specification 135

14. POE environment variables/command-line flags for I/O control 136

15. POE environment variables/command-line flags for diagnostic information 138

16. POE environment variables and command-line flags for Message Passing Interface (MPI) 138

17. POE environment variables/command-line flags for corefile generation 145

18. Other POE environment variables/command-line flags 145

© Copyright IBM Corp. 1993, 2005 v

||
||

||

vi IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

About this book

This book describes the IBM® Parallel Environment (PE) for AIX® program product

and its Parallel Operating Environment (POE). It shows how to use POE’s facilities

to compile, execute, and analyze parallel programs.

This book concentrates on the actual commands and how to use them, as opposed

to the writing of parallel programs. For this reason, you should use this book in

conjunction with IBM Parallel Environment for AIX: MPI Subroutine Reference and

IBM Parallel Environment for AIX: MPI Programming Guide. New users should refer

to IBM Parallel Environment for AIX: Introduction, for basic and introductory

information on PE.

This book assumes that AIX 5L™, X-Windows**, and the PE software are already

installed. It also assumes that you have been authorized to run the Parallel

Operating Environment (POE). The PE software is designed to run on a Cluster

1600 (RS/6000® SP™), an Eserver pSeries® or RS/6000 network cluster, or on a

mixed system where additional pSeries or RS/6000 processors supplement an SP

system. References to RS/6000 SP or SP include currently supported IBM Eserver

Cluster 1600 hardware. For complete information on installing the PE software and

setting up users, see IBM Parallel Environment for AIX: Installation.

Who should read this book

This book is designed primarily for end users and application developers. It is also

intended for those who run parallel programs, and some of the information

covered should interest system administrators. Readers should have knowledge of

the AIX operating system and the X-Window system. Where necessary, this book

provides some background information relating to these areas. More commonly,

this book refers you to the appropriate documentation.

How this book is organized

Overview of contents

This book contains the following information:

v Chapter 1, “Introduction,” on page 1 is a quick overview of the PE program

product. It describes the various PE components, and how you might use each

in developing a parallel application program.

v Chapter 2, “Executing parallel programs,” on page 7 describes how to compile

and execute parallel programs using the Parallel Operating Environment (POE).

v Chapter 3, “Managing POE jobs,” on page 51 includes information on allocating

nodes with IBM LoadLeveler®, and the environment variables to use when

running your applications.

v Appendix A, “Parallel environment commands,” on page 81 contains the

manual pages for the PE commands discussed throughout this book.

v Appendix B, “POE environment variables and command-line flags,” on page

131 describes the environment variables you can set to influence the execution of

parallel programs and the operation of PE tools. This appendix also describes

© Copyright IBM Corp. 1993, 2005 vii

the command-line flags associated with each of the environment variables. When

invoking a parallel program, you can use these flags to override the value of an

environment variable.

Conventions and terminology used in this book

This book uses the following typographic conventions:

 Table 1. Conventions and terminology used in this book

Convention Usage

bold Bold words or characters represent system elements that you must use literally, such

as: command names, file names, flag names, path names, PE component names

(pedb, for example), and subroutines.

constant width Examples and information that the system displays appear in constant-width

typeface.

italic Italicized words or characters represent variable values that you must supply.

Italics are also used for book titles, for the first use of a glossary term, and for general

emphasis in text.

[item] Used to indicate optional items.

<Key> Used to indicate keys you press.

In addition to the highlighting conventions, this manual uses the following

conventions when describing how to perform tasks.

User actions appear in uppercase boldface type. For example, if the action is to

enter the tool command, this manual presents the instruction as:

ENTER

tool

Abbreviated names

Some of the abbreviated names used in this book follow.

 Table 2. Parallel Environment abbreviations

Short Name Full Name

AIX Advanced Interactive Executive

CSM Clusters Systems Management

CSS communication subsystem

CTSEC cluster-based security

DPCL dynamic probe class library

dsh distributed shell

GUI graphical user interface

HDF Hierarchical Data Format

IP Internet Protocol

LAPI Low-level Application Programming Interface

MPI Message Passing Interface

PE IBM Parallel Environment for AIX

PE MPI IBM’s implementation of the MPI standard for PE

viii IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Table 2. Parallel Environment abbreviations (continued)

Short Name Full Name

PE MPI-IO IBM’s implementation of MPI I/O for PE

POE parallel operating environment

pSeries IBM Eserver pSeries

PSSP IBM Parallel System Support Programs for AIX

RISC reduced instruction set computer

RSCT Reliable Scalable Cluster Technology

rsh remote shell

RS/6000 IBM RS/6000

SP IBM RS/6000 SP

STDERR standard error

STDIN standard input

STDOUT standard output

Prerequisite and related information

The Parallel Environment library consists of:

v IBM Parallel Environment for AIX: Introduction, SA22-7947

v IBM Parallel Environment for AIX: Installation, GA22-7943

v IBM Parallel Environment for AIX: Messages, GA22-7944

v IBM Parallel Environment for AIX: MPI Programming Guide, SA22-7945

v IBM Parallel Environment for AIX: MPI Subroutine Reference, SA22-7946

v IBM Parallel Environment for AIX: Operation and Use, Volume 1, SA22-7948

v IBM Parallel Environment for AIX: Operation and Use, Volume 2, SA22-7949

To access the most recent Parallel Environment documentation in PDF and HTML

format, refer to the IBM Eserver Cluster Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

Both the current Parallel Environment books and earlier versions of the library are

also available in PDF format from the IBM Publications Center Web site located at:

http://www.ibm.com/shop/publications/order/

It is easiest to locate a book in the IBM Publications Center by supplying the

book’s publication number. The publication number for each of the Parallel

Environment books is listed after the book title in the preceding list.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. You can

use LookAt from the following locations to find IBM message explanations for

Clusters for AIX and Linux®:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site:

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

About this book ix

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

How to send your comments

Your feedback is important in helping to provide the most accurate and

high-quality information. If you have any comments about this book or any other

PE documentation:

v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Be sure to include the name of the book, the part number of the book, the

version of PE, and, if applicable, the specific location of the text you are

commenting on (for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or

by giving it to an IBM representative.

National language support (NLS)

For national language support (NLS), all PE components and tools display

messages that are located in externalized message catalogs. English versions of the

message catalogs are shipped with the PE licensed program, but your site may be

using its own translated message catalogs. The PE components use the AIX

environment variable NLSPATH to find the appropriate message catalog.

NLSPATH specifies a list of directories to search for message catalogs. The

directories are searched, in the order listed, to locate the message catalog. In

resolving the path to the message catalog, NLSPATH is affected by the values of

the environment variables LC_MESSAGES and LANG. If you get an error saying

that a message catalog is not found and you want the default message catalog:

ENTER

export NLSPATH=/usr/lib/nls/msg/%L/%N

 export LANG=C

The PE message catalogs are in English, and are located in the following

directories:

 /usr/lib/nls/msg/C

 /usr/lib/nls/msg/En_US

 /usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your

system administrator for the appropriate value of NLSPATH or LANG. For more

information on NLS and message catalogs, see AIX: General Programming Concepts:

Writing and Debugging Programs.

Summary of changes for Parallel Environment 4.2

This release of IBM Parallel Environment for AIX contains a number of functional

enhancements, including:

v Support for POWER3™, POWER4™, and POWER5™ servers running AIX 5L V5.2

or AIX 5L V5.3

x IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

v Support for IBM Eserver p5 servers and the High Performance Switch (HPS)

with AIX 5L V5.2 only, and coexistence in a cluster managed by Cluster Systems

Management (CSM)

v Remote Direct Memory Access (RDMA) for bulk data copy and transfer, and

large contiguous messages, only on the HPS

v Support for striping of messages over multiple adapters attached to the pSeries

HPS

v MPI support for 128 tasks per node using shared memory

v Support for LoadLeveler performance improvements

v Support for up to 8192 tasks in a single job, with improved memory utilization

for large jobs

v MPI collectives algorithm and optimization improvements

v MPI shared memory collectives use AIX 5L V5.3 cross-memory attachment

enhancements

v Point-to-point messages in shared memory use AIX 5L V5.3 cross-memory

attachment enhancements

v MPI/LAPI performance statistics

v The SP Switch is no longer supported

v PE 4.2 is the last release of PE that will support Parallel Systems Support

Programs for AIX (PSSP), the SP Switch2, and POWER3 servers

About this book xi

|

|
|

xii IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Chapter 1. Introduction

The IBM Parallel Environment for AIX program product (PE) is an environment

designed for developing and executing parallel Fortran, C, or C++ programs. PE

consists of components and tools for developing, executing, debugging, profiling,

and tuning parallel programs.

PE is a distributed memory message passing system. It runs on the pSeries or

RS/6000 platform using the AIX 5L Version 5.2 or AIX 5L Version 5.3 operating

system. Specifically, you can use PE to execute parallel programs on:

v selected configurations of the IBM Cluster 1600 (RS/6000 SP) as described in the

IBM Parallel Environment for AIX: Installation.

v a networked cluster of pSeries or RS/6000 processors, including a single

processor or a single workstation. This also includes systems supporting the

pSeries High Performance Switch.

v a mixed system. In a mixed system, additional pSeries or RS/6000 processors

supplement the processors of an SP system.

The pSeries or RS/6000 processors of your system are called processor nodes. If you

are using a Symmetric Multiprocessor (SMP) system, it is important to know that,

although an SMP node has more than one processing unit, it is still considered,

and referred to as, a processor node.

A parallel program executes as a number of individual, but related, parallel tasks on

a number of your system’s processor nodes. These parallel tasks are sometimes

referred to as parallel jobs. The group of parallel tasks is called a partition. The

processor nodes are connected on the same network, so the parallel tasks of your

partition can communicate to exchange data or synchronize execution:

v Your system may have an optional high performance switch for communication.

The switch increases the speed of communication between nodes. It supports a

high volume of message passing with increased bandwidth and low latency.

v Your system administrator can divide its nodes into separate pools. A

LoadLeveler system pool is a subset of processor nodes and is given an

identifying pool name or number.

In this document the generic term high performance switch refers to any one of the

following:

v pSeries High Performance Switch

v SP Switch2

PE supports the two basic parallel programming models – SPMD and MPMD. In

the SPMD (Single Program Multiple Data) model, the programs running the parallel

tasks of your partition are identical. The tasks, however, work on different sets of

data. In the MPMD (Multiple Program Multiple Data) model, each node may be

running a different program. A typical example of this is the master/worker

MPMD program. In a master/worker program, one task – the master – coordinates

the execution of all the others – the workers.

Note: While the remainder of this introduction describes each of the PE

components and tools in relation to a specific phase of an application’s life

cycle, this does not imply that they are limited to one phase. They are

© Copyright IBM Corp. 1993, 2005 1

|
|

|
|

|
|

|
|
|
|

ordered this way for descriptive purposes only; you will find many of the

tools useful across an application’s entire life cycle.

The application developer begins by creating a parallel program’s source code. The

application developer might create this program from scratch or could modify an

existing serial program. In either case, the developer places calls to Message

Passing Interface (MPI) or Low-level Application Programming Interface (LAPI)

routines so that it can run as a number of parallel tasks. This is known as

parallelizing the application. MPI provides message passing capabilities for the

current version of PE Version 4. PE Version 4 provides support for its threaded

MPI library only. An archive (libmpi.a) containing symbols resolving references

made by non-threaded executables is also shipped to support binary compatibility.

These merely map to the corresponding threaded library symbols.

Note: Throughout this book, when referring to anything not specific for MPI the

term message passing will be used. For example:

message passing program

message passing routine

message passing call

The message passing calls enable the parallel tasks of your partition to

communicate data and coordinate their execution. The message passing routines, in

turn, call communication subsystem library routines which handle communication

among the processor nodes. There are two separate implementations of the

communication subsystem library – the Internet Protocol (IP) Communication

Subsystem and the User Space (US) Communication Subsystem. While the message

passing application interface remains the same, the communication subsystem

libraries use different protocols for communication among processor nodes. The IP

communication subsystem uses Internet Protocol, while the US communication

subsystem is designed to exploit the high performance switch. The communication

subsystem library implementations are dynamically loaded when you invoke the

program. For more information on the message passing subroutine calls, refer to

IBM Parallel Environment for AIX: MPI Subroutine Reference and IBM Parallel

Environment for AIX: Introduction.

In addition to message passing communication, the Parallel Environment supports

a separate communication protocol known as the Low-level Application

Programming Interface (LAPI). LAPI differs from MPI in that it is based on an

“active message style” mechanism that provides a one-sided communications

model. That is, one process initiates an operation and the completion of that

operation does not require any other process to take a complementary action.

LAPI is now used as a common transport protocol for MPI, for both IP and User

Space. It is packaged as part of AIX, beginning with AIX 5.2 as the rsct.lapi.rte

fileset or is available as a component of PSSP. Refer to the IBM RSCT for AIX 5L:

LAPI Programming Guide for more information.

After writing the parallel program, the application developer then begins a cycle of

modification and testing. The application developer now compiles and runs his

program from his home node using the Parallel Operating Environment (POE).

The home node is any workstation on the LAN. POE is an execution environment

designed to hide, or at least smooth, the differences between serial and parallel

execution.

2 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

To assist with node allocation for job management, IBM LoadLeveler provides

resource management function. You can run parallel programs on a cluster of

processor nodes running LoadLeveler, or on a mixed system of LoadLeveler

processor nodes that supplement an RS/6000 SP (SP) frame or clustered server that

uses LoadLeveler. LoadLeveler not only provides node allocation for jobs using the

US communication subsystem, but also provides management for other clustered

nodes, or for nodes being used for jobs other than User Space. LoadLeveler can

also be used for POE batch jobs. See Using and Administering LoadLeveler for more

information on this job management system.

In general, with POE, you invoke a parallel program from your home node and

run its parallel tasks on a number of remote nodes. When you invoke a program

on your home node, POE starts your Partition Manager which allocates the nodes

of your partition and initializes the local environment. Depending on your

hardware and configuration, the Partition Manager uses a host list file,

LoadLeveler, or both a host list file and LoadLeveler to allocate nodes. A host list

file contains an explicit list of node requests, while LoadLeveler can allocate nodes

from one or more system pools implicitly based on their availability.

POE provides an option to enable you to specify whether your program will use

MPI, LAPI, or both. Using this option, POE ensures that each API initializes

properly and informs LoadLeveler which APIs are used so each node is set up

completely.

For Single Program Multiple Data (SPMD) applications the Partition Manager

executes the same program on all nodes. For Multiple Program Multiple Data

(MPMD) applications, the Partition Manager prompts you for the name of the

program to load on each node. The Partition Manager also connects standard I/O

to each remote node so the parallel tasks can communicate with the home node.

Although you are running tasks on remote nodes, POE allows you to continue

using the standard UNIX® and AIX execution techniques with which you are

already familiar. For example, you can redirect input and output, pipe the output

of programs, or use shell tools. POE includes:

v A number of parallel compiler scripts. These are shell scripts that call the C,

C++, or Fortran compilers while also linking in an interface library to enable

communication between your home node and the parallel tasks running on the

remote nodes. You dynamically link in a communication subsystem

implementation when you invoke the executable.

v A number of POE Environment Variables you can use to set up your execution

environment. These are AIX environment variables you can set to influence the

operation of POE. These environment variables control such things as how

processor nodes are allocated, what programming model you are using, and

how standard I/O between the home node and the parallel tasks should be

handled. Most of the POE environment variables also have associated

command-line flags that enable you to temporarily override the environment

variable value when invoking POE and your parallel program.

The following tools are discussed in IBM Parallel Environment for AIX: Operation and

Use, Volume 2 and allow you to debug and tune parallel programs.

The parallel debugging facility is pdbx – a line-oriented debugger based on the

dbx debugger.

Chapter 1. Introduction 3

Once the parallel program is debugged, you now want to tune the program for

optimal performance. To do this, you turn to the PE parallel profiling capability to

analyze the program.

The parallel profiling capability enables you to use the AIX Xprofiler graphical

user interface, as well as the AIX commands prof and gprof on parallel programs.

PE Benchmarker enables you to obtain an MPI trace of all or selected regions of a

parallel application and to obtain profiling information on all or selected regions of

a parallel application.

h

Note: Once the parallel program is tuned to your satisfaction, you might prefer to

execute it using a job management system such as IBM LoadLeveler. If you

do use a job management system, consult its documentation for information

on its use.

PE Version 4 Release 2 migration information

This section is intended for customers migrating from earlier releases of PE to

Version 4 Release 2. It contains specific information on some differences between

earlier releases that you need to consider prior to installing and using PE Version 4

Release 2. To find out which release of PE you currently have installed, use the

command:

lslpp -ha ppe.poe

AIX compatibility

 PE Version 4 Release 2 commands and applications are compatible with

AIX 5L Version 5.2 and Version 5.3, or later only, and not with earlier

versions of AIX.

MPI library support

 PE Version 4 Release 2 provides support for its threaded version of the

MPI library only. An archive (libmpi.a) containing symbols resolving

references made by non-threaded executables is also shipped to support

binary compatibility. These merely map to the corresponding threaded

library symbols.

 Existing applications built as non-threaded applications will execute as

single threaded applications in the PE Version 4 Release 2 environment.

Users and application developers should understand the implications of

their programs running as threaded applications, as described in the IBM

Parallel Environment 4.2 MPI Programming Guide.

LAPI support

 LAPI is shipped as part of RSCT, in the rsct.lapi.rte fileset. The LAPI

libraries found in previous versions of POE have been removed and are

now packaged as part of RSCT, or as part of PSSP when running on an SP.

 Additionally, MPI uses LAPI as a common transport protocol. If you are

using the LAPI API to develop a message passing application, you may

find useful information in the IBM RSCT for AIX 5L: LAPI Programming

Guide.

Binary compatibility

4 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|

|
|

Binary compatibility is supported for existing applications that have been

dynamically linked or created with the non-threaded compiler scripts from

previous versions of POE. There is no support for statically bound

executables.

 Existing 32-bit applications that use striping may encounter memory usage

conflicts and may need to be recompiled or use different run-time options

in order to properly execute. See “Considerations for data striping, failover

and recovery with PE” on page 61 for more information. 64-bit applications

are not affected.

AIX profiling support

AIX 5.3 has added enhanced application program profiling, with support

for thread-level profiling, in addition to other capabilities that include

allowing the user to specify their own file name in place of the default.

This results in changes in the way POE handles profiling and naming of

parallel program profiling output files. Refer to IBM Parallel Environment

4.2: Operation and Use, Volume 2 for further details.

 Profiling in AIX 5.2 is unaffected. However, users may need to consider the

differences in profiling between AIX 5.2 and AIX 5.3 if they plan to soon

migrate to AIX 5.3.

Obsolete POE environment variables and options

 The following are obsolete:

v The value of css1, when used with MP_EUIDEVICE or -euidevice.

v MP_INTRDELAY/-intrdelay

v MP_SHM_CC/-shm_cc. With the PE 4.2 release, MP_SHM_CC-shm_cc

has been subsumed by MP_SHARED_MEMORY/-shared_memory.

v MP_USE_FLOW_CONTROL/-use_flow_control

User Space applications with MP_EUIDEVICE/-euidevice

Existing User Space applications that set MP_EUIDEVICE/-euidevice to

sn_single or css0 on systems using multiple adapters and multiple networks

will not benefit from the performance improvements provided by using the

sn_all or csss value. In this case, you may want to change the

MP_EUIDEVICE/-euidevice settings for such applications. Also note that

css1 can no longer be specified as a value for MP_EUIDEVICE or

-euidevice. See “Step 3f: Set the MP_EUIDEVICE environment variable” on

page 24 for more information.

Shared memory default changed

The use of shared memory for message passing between tasks running on

the same node has been changed so that all invocations of POE will utilize

shared memory as the default. For 64-bit applications, this includes using

the shared memory enhanced collective communications algorithms. To

run without using shared memory, change the value of the

MP_SHARED_MEMORY environment variable or -shared_memory

command line flag to no.

SP Switch no longer supported

Beginning with PE 4.2, The SP Switch is no longer supported.

Chapter 1. Introduction 5

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|

|

|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|

6 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Chapter 2. Executing parallel programs

This chapter describes the Parallel Operating Environment (POE). POE is a simple

and friendly environment designed to ease the transition from serial to parallel

application development and execution. POE lets you develop and run parallel

programs using many of the same methods and mechanisms as you would for

serial jobs. POE allows you to continue to use the standard UNIX and AIX

application development and execution techniques with which you are already

familiar. For example, you can redirect input and output, pipe the output of

programs into more or grep, write shell scripts to invoke parallel programs, and

use shell tools such as history. You do all these in just the same way you would

for serial programs. So while the concepts and approach to writing parallel

programs must necessarily be different, POE makes your working environment as

familiar as possible.

This chapter describes the steps involved in compiling and executing your parallel

C, C++, or Fortran programs using either an IBM RS/6000 SP, a pSeries or RS/6000

network cluster, or a mixed system.

Executing parallel programs using POE

This section discusses how to compile and execute your parallel C, C++, or Fortran

programs. It leaves out the first step in any application’s life cycle which is actually

writing the program. For information on writing parallel programs, refer to IBM

Parallel Environment for AIX: MPI Subroutine Reference, IBM Parallel Environment for

AIX: MPI Programming Guide, IBM Parallel Environment for AIX: Hitchhiker’s Guide,

IBM Parallel System Support Programs for AIX: Command and Technical Reference and

the IBM RSCT for AIX 5L: LAPI Programming Guide.

Note: If you are using POE for the first time, check that you have authorized

access. See IBM Parallel Environment for AIX: Installation for information on

setting up users.

In order to execute an MPI or LAPI parallel program, you need to:

1. Compile and link the program using shell scripts or make files which call the

C, C++, or Fortran compilers while linking in the Partition Manager interface

and message passing subroutines.

2. Copy your executable to the individual nodes in your partition if it is not

accessible to the remote nodes.

3. Set up your execution environment. This includes setting the number of tasks,

and determining the method of node allocation.

4. Load and execute the parallel program on the processor nodes of your

partition. You can:

v load a copy of the same executable on all nodes of your partition. This is the

normal procedure for SPMD programs.

v individually load the nodes of your partition with separate executables. This

is the normal procedure for MPMD programs.

v load and execute a series of SPMD or MPMD programs, in job step fashion,

on all nodes of your partition.

© Copyright IBM Corp. 1993, 2005 7

Step 1: Compile the program

As with a serial application, you must compile a parallel C, C++, or Fortran

program before you can run it. Instead of using the usual programming

commands, (cc, xlC, xlf, cc_r, xlC_r, xlf_r), you use commands that not only

compile your program, but also link in the Partition Manager and message passing

interface libraries. When you later invoke the program, the subroutines in these

libraries enable the home node Partition Manager to communicate with the parallel

tasks, and the tasks with each other.

Parallel programs can also utilize functions to checkpoint and later restart a

program. For more information on checkpointing refer to “Checkpointing and

restarting programs” on page 44.

For each of the supported compilers (C, C++, Fortran, Fortran 90, Fortran 95), POE

provides separate commands to compile and link application programs with the

parallel libraries, allowing the program to run in parallel. To compile a program

for use with POE, you use the mpcc_r (C compiler), mpCC_r (C++ compiler),

mpxlf_r (Fortran compiler), mpxlf90_r (Fortran 90 compiler), or mpxlf95_r (Fortran

95 compiler) command. These commands generate thread-aware code by linking in

the threaded version of MPI, including the threaded POE utility library.

The POE compiler scripts will create dynamically bound executables, referencing

the appropriate MPI, LAPI, and threaded libraries, some of which are dynamically

loaded. As a result, it is no longer possible to create statically bound executables in

PE Version 4. PE Version 4 no longer supports the use of statically bound

application programs.

Previously, there were two versions of these commands, for non-threaded and

threaded programs. Only the threaded version of MPI is supported in PE Version

4. Legacy POE scripts, such as mpcc, mpCC, and mpxlf, are now symbolic links to

mpcc_r, mpCC_r, and mpxlf_r.

These compiler commands are actually shell scripts which call the appropriate

compiler. You can use any of the cc_r, xlC_r, or xlf_r flags on these commands. We

suggest you allow the scripts to provide appropriate include paths for the PE MPI

include files rather than provide them explicitly.

The following table shows what to enter to compile a program depending on the

language in which it is written. For more information on these commands, see

Appendix A, “Parallel environment commands,” on page 81.

 Table 3. Compiling a program

To compile: ENTER

a C program mpcc_r program.c -o program

a C++ program mpCC_r program.C -o program

a Fortran program mpxlf_r program.f -o program

a Fortran 90 program mpxlf90_r program.f -o program

a Fortran 95 program mpxlf95_r program.f -o program

Notes:

1. Be sure to specify the -g flag when compiling a program for use with the

parallel debugger. The -g flag is a standard compiler flag that produces an

object file with symbol table references. These symbol table references are

8 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|

needed by the debugger. For more information on the -g option, refer to its use

on the cc command as described in IBM AIX 5L Commands Reference.

2. For 32-bit applications only, programs compiled for use with POE are limited to

eight (8) data segments. The -bmaxdata option cannot specify more than

0x80000000. The actual amount available may be less, depending on whether

shared memory or user space striping is being used by MPI and/or LAPI. See

“Considerations for data striping, failover and recovery with PE” on page 61

for more information.

3. The POE compiler scripts will evaluate a dollar sign ($) in a file name as if it

were a shell variable, which may not produce the desired result in resolving the

file name to be compiled. If your program file names contain the dollar sign,

you will need to prevent the compiler scripts from evaluating it as a shell

variable.

For example, if your file name is $foo.f, you need to invoke the compiler script

as:

mpxlf_r "\\\$foo.f"

or

mpxlf_r "*foo.f"

4. POE compile scripts utilize the -binitfini binder option. As a result, POE

programs have a priority default of zero. If other user applications are using

the initfini binder option, they should only specify a priority in the range of 1

to 2,147,483,647.

Step 2: Copy files to individual nodes

Note: You only need to perform this step if your executable, your data files, and

(if you plan to use pdbx) your source code files are not in a commonly

accessed, or shared, file system. For more information on the parallel

debuggers, see IBM Parallel Environment for AIX: Operation and Use, Volume 2.

If the program you are running is in a shared file system, the Partition Manager

loads a copy of your executable in each processor node in your partition when you

invoke a program. If your executable is in a private file system, however, you must

copy it to the nodes in your partition. If you plan to use the parallel debugger

pdbx, you must copy your source files to all nodes as well.

You can copy your executable to each node with the mcp command. mcp uses the

message passing facilities of the Parallel Environment to copy a file from a file

system on the home node to a remote node file system. For example, assume that

your executable program is on a mounted file system

(/u/edgar/somedir/myexecutable), and you want to make a private copy in /tmp on

each node in host.list.

ENTER

mcp /u/edgar/somedir/myexecutable /tmp/myexecutable -procs n

For more information on the mcp command, refer to “mcp” on page 82. You can

also copy files to individual nodes of your partition using the PSSP or CSM

commands dsh and pcp. For more information on these commands refer to IBM

Parallel System Support Programs for AIX: Command and Technical Reference. You will

also find information specific to dsh in CSM for AIX 5L V1.3.1.20 Command and

Technical Reference.

Chapter 2. Executing parallel programs 9

|
|
|
|
|
|

|
|
|
|
|
|

Note: If you load your executable from a mounted file system, you may

experience an initial delay while the program is being initialized on all

nodes. You may experience this delay even after the program begins

executing, because individual pages of the program are brought in on

demand. This is particularly apparent during initialization of the message

passing interface; since individual nodes are synchronized, there are

simultaneous demands on the network file transfer system. You can

minimize this delay by copying the executable to a local file system on each

node, using the mcp message passing file copy program.

Step 3: Set up the execution environment

This step contains the following sections:

v “Step 3a: Set the MP_PROCS environment variable” on page 15

v “Step 3b: Create a host list file” on page 16

v “Step 3c: Set the MP_HOSTFILE environment variable” on page 21

v “Step 3d: Set the MP_RESD environment variable” on page 22

v “Step 3e: Set the MP_EUILIB environment variable” on page 23

v “Step 3f: Set the MP_EUIDEVICE environment variable” on page 24

v “Step 3g: Set the MP_MSG_API environment variable” on page 25

v “Step 3h: Set the MP_RMPOOL environment variable” on page 25

Before invoking your program, you need to set up your execution environment.

There are a number of POE environment variables discussed throughout this book

and summarized in Appendix B, “POE environment variables and command-line

flags,” on page 131. Any of these environment variables can be set at this time to

later influence the execution of parallel programs. If your system is configured for

DCE (Kerberos 5) authentication, you should, before setting any POE environment

variables, obtain your DCE user credentials using the dce_login command. You

should do this before setting any POE environment variables, because the

dce_login command creates a new shell; any environment variables set prior to

creating the new shell will not be in effect in the new shell.

This step covers those environment variables most important to successfully invoke

a parallel program. When you invoke a parallel program, your home node

Partition Manager checks these environment variables to determine:

v the number of tasks in your program as specified by the MP_PROCS

environment variable.

v how to allocate processor nodes for these tasks. There are two basic methods of

node allocation – specific and nonspecific.

For specific node allocation, the Partition Manager reads an explicit list of nodes

contained in a host list file you create. If you do not have LoadLeveler, or if you

are using nodes that are not part of the LoadLeveler cluster, you must use this

method of node allocation.

For nonspecific node allocation, you give the Partition Manager the name or

number of a LoadLeveler pool. A pool name or number may also be provided in

a host list file. The Partition Manager then connects to LoadLeveler, which

allocates nodes from the specified pool(s) for you. For more information on

LoadLeveler and LoadLeveler pools, refer to “Scenarios for allocating nodes with

LoadLeveler” on page 58.

Note: The following table lists the limits on the total number of tasks in a parallel

job and the maximum number of tasks on a node (operating system image).

10 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|

If two limits are listed, the most restrictive limit applies. The maximum

number of nodes for the pSeries HPS switch is 2048 and for the SP Switch2

it is 512. The maximum number of supported tasks is 8192.

 Table 4. Number of tasks in a parallel job and maximum number of tasks on a node.

Protocol Limit Switch/Adapter Total Task Limit Task per Node Limit

IP any 8192 No specific limit.

However, for

LoadLeveler, the task

per node limit is

limited by the

number of starter

processes configured

for a node.

US SP Switch2/Colony 8192 16

US SP Switch2/PCI 8192 32

US pSeries HPS with one

adapter

8192 64

US pSeries HPS with 2

adapters per network

8192 128

There are five separate environment variables that, collectively, determine how

nodes are allocated by the Partition Manager. The following description of these

environment variables assumes that you are not submitting a job using a

LoadLeveler job command file as described in “Submitting an interactive POE job

using an IBM LoadLeveler command file” on page 70. If you do intend to use a

LoadLeveler job command file, be aware that, in order to avoid conflicting

allocation specifications made via POE environment variables/command-line flags,

LoadLeveler job command file statements, and POE host list file entries, certain

settings will be ignored or will cause errors. The following information, therefore,

assumes that you are not using a LoadLeveler job command file. Also keep in

mind that, while the following environment variables are the only ones you must

set to allocate nodes, there are many other environment variables you can set.

These are summarized in Appendix B, “POE environment variables and

command-line flags,” on page 131, and control such things as standard I/O

handling and message passing information. The environment variables for node

allocation are:

MP_HOSTFILE

which specifies the name of a host list file to use for node allocation. If set

to an empty string (“ ”) or to the word “NULL”, this environment variable

specifies that no host list file should be used. If MP_HOSTFILE is not set,

POE looks for a file host.list in the current directory. You need to create a

host list file if you want specific node allocation.

MP_RESD

which specifies whether or not the Partition Manager should connect to

LoadLeveler to allocate nodes.

Note: When running POE from a workstation that is external to the

LoadLeveler cluster, the LoadL.so fileset must be installed on the

external node (see Using and Administering LoadLeveler and IBM

Parallel Environment for AIX: Installation for more information).

MP_EUILIB

which specifies the communication subsystem implementation to use –

Chapter 2. Executing parallel programs 11

|
|
|

||

||||

||||
|
|
|
|
|
|
|

||||

||||

||
|
||

||
|
||

|

|

either the IP communication subsystem implementation or the User Space

(US) communication subsystem implementation. The IP communication

subsystem uses Internet Protocol for communication among processor

nodes, while the US communication subsystem lets you drive an RS/6000

SP (SP) frame or clustered server’s high-speed interconnect switch directly

from your parallel tasks, without going through the kernel or operating

system. For US communication on an RS/6000 SP SP frame or clustered

server system, you must have the high-speed interconnect switch feature.

MP_EUIDEVICE

which specifies the adapter set you want to use for communication among

processor nodes. The Partition Manager checks this if you are using the

communication subsystem implementation with LoadLeveler. If

MP_RESD=no, the value of MP_EUIDEVICE is ignored. It is also checked

for User Space. For User Space, the values of css0 and sn_single specify

that windows are requested on one common network. The values csss and

sn_all specify that windows are requested from each network in the

system. The number of windows being requested depends on the value of

the MP_INSTANCES environment variable (the default is one). In the case

of csss and sn_all, the number of windows being requested also depends

on the number of networks in the system.

MP_RMPOOL

which specifies the name or number of a LoadLeveler pool. The Partition

Manager only checks this if you are using LoadLeveler without a host list

file. You can use the llstatus command to return information about

LoadLeveler pools. To use llstatus on a workstation that is external to the

LoadLeveler system, the LoadL.so fileset must be installed on the external

node. For more information, see Using and Administering LoadLeveler and

IBM Parallel Environment for AIX: Installation.

The remainder of this step consists of sub-steps describing how to set each of these

environment variables, and how to create a host list file. Depending on the

hardware and message passing library you are using, and the method of node

allocation you want, some of the sub-steps that follow may not apply to you. For

this reason, pay close attention to the task variant tables at the beginning of many

of the sub-steps. They will tell you whether or not you need to perform the

sub-step.

For further clarification, the following tables summarize the procedure for

determining how nodes are allocated. The tables describe the possible methods of

node allocation available to you, to what each environment variable must be set,

and whether or not you need to create a host list file.

As already stated, this section assumes that you are not using a LoadLeveler job

command file and, therefore, the MP_LLFILE environment variable (or its

associated command-line flag -llfile) is not set. To allocate nodes using a

LoadLeveler job command file, refer to “Submitting an interactive POE job using

an IBM LoadLeveler command file” on page 70 or the manual Using and

Administering LoadLeveler.

To make the procedure of setting up the execution environment easier and less

prone to error, you may eventually wish to create a shell script which automates

some of the environment variable settings. To allocate nodes of an RS/6000 SP(SP)

frame or clustered server that uses LoadLeveler, see Table 5 on page 13. If you are

12 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|
|
|
|
|
|
|

using a pSeries or RS/6000 network cluster, or a mixed system and want to

allocate some nodes that are not part of the LoadLeveler cluster, see Table 6 on

page 14.

 Table 5. Execution setup summary (for an SP system or clustered server with LoadLeveler).

If you want to use the US communication

subsystem library for communication

among parallel tasks and...

If you want to use the IP communication

subsystem library for communication

among parallel tasks and...

you want specific

node allocation:

you want nonspecific

node allocation from

a single LoadLeveler

pool:

you want specific

node allocation:

you want nonspecific

node allocation from

a single LoadLeveler

pool:

a host list file is... required not required. If used,

however, all entries

must specify the

same LoadLeveler

pool.

required not required. If used,

however, all entries

must specify the

same LoadLeveler

pool.

MP_HOSTFILE Should be set to the

name of your host list

file. If not set, the

host list file is

assumed to be host.list

in the current

directory.

No host list file is

required. If none is

used, MP_HOSTFILE

should be set to an

empty string (″″) or

the word ″NULL″.

Should be set to the

name of your host list

file. If not set, the

host list file is

assumed to be host.list

in the current

directory.

No host list file is

required. If none is

used, MP_HOSTFILE

should be set to an

empty string (″″) or

the word ″NULL″.

MP_RESD Should be set to yes.

If set to an empty

string (″″), or if not

set, the Partition

Manager assumes the

value of MP_RESD is

yes.

Should be set to yes.

If set to an empty

string (″″), or if not

set, the Partition

Manager assumes the

value of MP_RESD is

yes.

Should be set to yes.

If set to an empty

string (″″), or if not

set, the Partition

Manager assumes the

value of MP_RESD is

no.

Should be set to yes.

If set to an empty

string (″″), or if not

set, the Partition

Manager assumes the

value of MP_RESD is

yes.

MP_EUILIB

Note: The values of

MP_EUILIB are case

sensitive.

us us ip ip

MP_EUIDEVICE csss (the high

performance switch).

css0,sn_all,sn_single

csss (the high

performance switch).

css0,sn_all,sn_single

Should specify the

adapter type.

Should specify the

adapter type.

MP_RMPOOL is ignored because

you are using a host

list file.

if you are not using a

host list file,

MP_RMPOOL

should be set to the

name or number of a

LoadLeveler pool. If

you are using a host

list file,

MP_RMPOOL is

ignored; you must

specify the pool in

the host list file.

is ignored because

you are using a host

list file.

if you are not using a

host list file,

MP_RMPOOL

should be set to the

name or number of a

LoadLeveler pool. If

you are using a host

list file,

MP_RMPOOL is

ignored; you must

specify the pool in

the host list file.

Note: This preceding table assumes that the MP_LLFILE environment variable is

not set, and the -llfile flag is not used. If the MP_LLFILE environment

variable (or its associated command-line flag) is used, indicating that a

LoadLeveler job command file should participate in node allocation, be

aware that some of the environment variables shown in this table will be

Chapter 2. Executing parallel programs 13

||

||
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|||
|
|
|
|

||
|
|
|
|

||
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

||
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

||||

||
|
|

|
|
|

|
|
|
|

||
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

ignored. The reason they will be ignored is to avoid conflicting allocation

specifications made via POE environment variables/command-line flags,

POE host list file entries, and LoadLeveler job command file statements. For

more information on the POE environment variables that will be ignored

when a LoadLeveler job command file is used, refer to “Submitting an

interactive POE job using an IBM LoadLeveler command file” on page 70.

 Table 6. Execution environment setup summary (for pSeries or RS/6000 network cluster or a mixed system whose

additional nodes are not part of the LoadLeveler cluster)

A host list file... is used.

MP_HOSTFILE should be set to the name of a host list file. If not defined, the host list file is

assumed to be host.list in the current directory.

MP_RESD should be set to no.

MP_EUILIB should be set to ip.

MP_RMPOOL is not used because you are using a host list file.

The following table shows how nodes will be allocated depending on the value of

the environment variables discussed in this step. It is provided here for additional

illustration. Refer to it in situations when the environment variables are set in

patterns other than those suggested in Table 5 on page 13, and Table 6. When

reading the following table, be aware that, if a LoadLeveler job command file is

specified (using the MP_LLFILE environment variable or the -llfile flag), the value

of MP_RESD will be yes.

 Table 7. Node allocation summary

If Then

The value of

MP_EUILIB is:

The value of

MP_RESD is:

Your Host List file

contains a list of:

The allocation

mode will be:

The

communication

subsystem

library

implementation

used will be:

The message

passing address

used will be:

ip - nodes Node_List IP Nodes

pools LL_List IP MP_EUIDEVICE

NULL LL IP MP_EUIDEVICE

yes nodes LL_List IP MP_EUIDEVICE

pools LL_List IP MP_EUIDEVICE

NULL LL IP MP_EUIDEVICE

no nodes Node_List IP Nodes

pools Error - -

NULL Error - -

14 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Table 7. Node allocation summary (continued)

If Then

us - nodes LL_List US N/A

pools LL_List US N/A

NULL LL US N/A

yes nodes LL_List US N/A

pools LL_List US N/A

NULL LL US N/A

no nodes Node_List IP

Nodes

- -

pools Error - -

NULL Error - -

- - nodes Node_List IP Nodes

pools LL_List IP MP_EUIDEVICE

NULL LL IP MP_EUIDEVICE

yes nodes LL_List IP MP_EUIDEVICE

pools LL_List IP MP_EUIDEVICE

NULL LL IP MP_EUIDEVICE

no nodes Node_List IP Nodes

pools Error - -

NULL Error - -

Note:

Node_List means that the host list file is used to create the partition.

LL_List means that the host list file is used to create the partition, but the nodes are requested from

LoadLeveler.

LL means that the partition is created by requesting nodes in MP_RMPOOL from LoadLeveler.

Nodes indicates that the external IP address of the processor node is used for communication.

MP_EUIDEVICE

indicates that the IP adapter address indicated by MP_EUIDEVICE is used for communication.

Step 3a: Set the MP_PROCS environment variable

Before you execute a program, you need to set the size of the partition. To do this,

use the MP_PROCS environment variable or its associated command-line flag

-procs. For example, say you want to specify the number of task processes as 6.

You could:

 Set the MP_PROCS environment variable: Use the -procs flag when invoking the program:

ENTER

export MP_PROCS=6

ENTER

poe program -procs 6

If you do not set MP_PROCS, the default number of task processes is 1 unless you

have set the MP_RMPOOL environment variable (or -rmpool command-line flag)

for nonspecific node allocation from a single LoadLeveler pool, and have set both

the MP_NODES and MP_TASKS_PER_NODE environment variables (or their

associated command-line flags) to further specify how LoadLeveler should allocate

Chapter 2. Executing parallel programs 15

nodes within the pool. In such cases, if MP_PROCS is not set, the parallel job will

consist of MP_TASKS_PER_NODE multiplied by MP_NODES tasks. See “Step 3h:

Set the MP_RMPOOL environment variable” on page 25 for more details.

Step 3b: Create a host list file

 You need to create a host list file if: You do not need to create a host list file if:

v you are using a pSeries or RS/6000 network cluster.

v you are using a mixed system which consists of some

nodes not part of the LoadLeveler cluster.

you are using an SP system (or a mixed system whose

additional processor nodes are part of the LoadLeveler

cluster) and want nonspecific node allocation.

A host list file specifies the processor nodes on which the individual tasks of your

program should run. When you invoke a parallel program, your Partition Manager

checks to see if you have specified a host list file. If you have, it reads the file to

allocate processor nodes. The procedure for creating a host list file differs

depending on whether you are using a pSeries or RS/6000 network cluster, a

LoadLeveler cluster, an SP system, or a mixed system. If you are using a pSeries or

RS/6000 network cluster, see “Creating a host list file to allocate nodes of a cluster

without LoadLeveler.” If you are using a LoadLeveler cluster, an SP system, or a

mixed system, see “Creating a host list file to allocate nodes with LoadLeveler” on

page 17.

Creating a host list file to allocate nodes of a cluster without LoadLeveler: If

you are using a pSeries or RS/6000 cluster, a host list file simply lists a series of

host names – one per line. These must be the names of remote nodes accessible

from the Home Node. Lines beginning with an exclamation point (!) or asterisk (*)

are comments. The Partition Manager ignores blank lines and comments. The host

list file can list more names than are required by the number of program tasks. The

additional names are ignored.

To understand how the Partition Manager uses a host list file to determine the

nodes on which your program should run, consider the following example host list

file:

! Host list file for allocating 6 tasks

* An asterisk may also be used to indicate a comment

host1_name

host2_name

host3_name

host4_name

host5_name

host6_name

The Partition Manager ignores the first two lines because they are comments, and

the third line because it is blank. It then allocates host1_name to run task 0,

host2_name to run task 1, host3_name to run task 2, and so on. If any of the

processor nodes listed in the host list file are unavailable when you invoke your

program, the Partition Manager returns a message stating this and does not run

your program.

You can also have multiple tasks of a program share the same node by simply

listing the same node multiple times in your host list file. For example, say your

host list file contains the following:

16 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

host1_name

host2_name

host3_name

host1_name

host2_name

host3_name

Tasks 0 and 3 will run on host1_name, tasks 1 and 4 will run on host2_name, and

tasks 2 and 5 will run on host3_name.

Creating a host list file to allocate nodes with LoadLeveler: If you are using a

LoadLeveler cluster or an SP system (or a mixed system whose additional nodes

are part of the LoadLeveler cluster), you can use a host list file for either:

v nonspecific node allocation from one system pool only.

v specific node allocation. If you are using a mixed system whose additional nodes

are not part of the LoadLeveler cluster, you must use specific node allocation.

In either case, the host list file can contain a number of records – one per line. For

specific node allocation, each record indicates a processor node. For nonspecific

node allocation you can have one system pool only. Your host list file cannot

contain a mixture of node and pool requests, so you must use one method or the

other. The host list file can contain more records than required by the number of

program tasks. The additional records are ignored.

For specific node allocation: Each record is either a host name or IP adapter address

of a specific processor node of the system. If you are using a mixed system and

want to allocate nodes that are not part of the LoadLeveler cluster, you must

request them by host name. Lines beginning with an exclamation point (!) or

asterisk (*) are comments. The Partition Manager ignores blank lines and

comments.

To understand how the Partition Manager uses a host list file to determine the

system nodes on which your program should run, consider the following

representation of a host list file.

! Host list file for allocating 6 tasks

host1_name

host2_name

host3_name

9.117.8.53

9.117.8.53

9.117.8.53

The Partition Manager ignores the first line because it is a comment, and the

second because it is blank. It then allocates host1_name to run task 0, host2_name to

run task 1, host3_name to run task 2, and so on. The last three nodes are requested

by adapter IP address using dot decimal notation.

Note: If any of the processor nodes listed in the host list file are unavailable when

you invoke your program, the Partition Manager returns a message stating

this and does not run your program.

For nonspecific node allocation from a LoadLeveler pool: After installation of a

LoadLeveler cluster, your system administrator divides its processor nodes into a

number of pools. With LoadLeveler, each pool has an identifying pool name or

Chapter 2. Executing parallel programs 17

number. Using LoadLeveler for nonspecific node allocation, you need to supply the

appropriate pool name or number. When specifying pools in a host list file, each

entry must be for the same pool.

If you require information about LoadLeveler pools, use the command llstatus. To

use llstatus on a workstation that is external to the LoadLeveler cluster, the

LoadL.so fileset must be installed on the external node (see Using and Administering

LoadLeveler for more information).

ENTER

llstatus -l (lower case L)

 LoadLeveler lists status information including the pools in the LoadLeveler

cluster.

 For more information on the llstatus command and LoadLeveler pools, see Using

and Administering LoadLeveler.

When specifying LoadLeveler pools in a host list file, each entry must refer to the

same pool (by name or number), and should be preceded by an at symbol (@).

Lines beginning with an exclamation point (!) and asterisk (*) are comments. The

Partition Manager ignores blank lines and comments.

To understand how the Partition Manager uses a host list file for nonspecific node

allocation, consider the following example host list file:

! Host list file for allocating 3 tasks with LoadLeveler

@6

@6

@6

The Partition Manager ignores the first line because it is a comment, and the

second line because it is blank. The at (@) symbols tell the Partition Manager that

these are pool requests. It connects to LoadLeveler to request three nodes from

pool 6.

Note: If there are insufficient nodes available in a requested pool when you invoke

your program, the Partition Manager returns a message stating this, and

does not run your program.

Specifying how a node’s resources are used: When requesting nodes using

LoadLeveler specific node allocation, you can optionally request how each node’s

resources – its adapters and CPU – should be used. You can specify:

v Whether the node’s adapter is to be dedicated or shared.

If the node’s adapter is to be dedicated, and if using:

– A single adapter, only a single program task can use it for the same protocol.

– Striping and multiple adapters, any window that is allocated on an adapter

will prevent other tasks from using windows on the same adapter.

If the node’s adapter is to be shared, a number of tasks of different jobs on that

node can use it. (see Table 8 on page 19).

v Whether the node’s CPU usage should be unique or multiple. If unique, only your

program’s tasks can use the CPU. If multiple, your program may share the node

with other users.

18 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|

|

|

|
|

|
|

If dedicated, using a single adapter, only a single program task can use it for the

same protocol. If dedicated, using multiple adapters, or if using striping, any

window that is allocated on an adapter will prevent other tasks from using

windows on the same adapter.

When using LoadLeveler for nonspecific node allocation, any usage specification in

the host list file will be ignored. Instead, you can request how nodes are used with

the MP_CPU_USE and/or MP_ADAPTER_USE environment variables (or their

associated command line options) or you can specify this information in a

LoadLeveler Job Command File.

Using the environment variables MP_ADAPTER_USE and MP_CPU_USE, or the

associated command line options (-adapter_use and -cpu_use) to make either or

both of these specifications will affect the resource usage for each node allocated

from the pool specified using MP_RMPOOL or -rmpool. For example, if you

wanted nodes from pool 5, and you wanted your program to have exclusive use of

both the adapter and CPU, the following command line could be used:

poe [program] -rmpool 5 -adapter_use[dedicated]

-cpu_use[unique] [more_poe_options]

Associated environment variables (MP_RMPOOL, MP_ADAPTER_USE,

MP_CPU_USE) could also be used to specify any or all of the options in this

example.

Note: You can also use a LoadLeveler job command file to specify how a node’s

resources are used. If you use a LoadLeveler job command file, the

MP_RMPOOL, MP_ADAPTER_USE, and MP_CPU_USE environment

variables will be validated but ignored. For more information about

LoadLeveler job command files, see Using and Administering LoadLeveler.

The following tables illustrate how node resources are used. Table 8 shows the

default settings for adapter and CPU use, while Table 9 on page 20 outlines how

the two separate specifications determine how the allocated node’s resources are

used.

 Table 8. Adapter/CPU default settings

 Adapter CPU

If host list file contains nonspecific

pool requests:

Dedicated Unique

If host list file requests specific

nodes:

Shared

1 Multiple

If host list file is not used: Dedicated2 Unique3

Note:

1 For US jobs, adapter is dedicated.

2 For IP jobs, adapter is shared.

3 For IP jobs, CPU is multiple.

Chapter 2. Executing parallel programs 19

Table 9. Adapter/CPU use under LoadLeveler

If the Node’s CPU is “Unique”: If the Node’s CPU is “Multiple”:

If the adapter use is “Dedicated”: Intended for production runs of high

performance applications. Only the

tasks of that parallel job use the

adapter and CPU.

The adapter you specified with

MP_EUIDEVICE is dedicated to the

tasks of your parallel job. However,

you and other users still have access

to the CPU through another adapter.

Also, if you are using striping or

multiple adapters, any window that

is allocated on an adapter will

prevent other tasks from using

windows on that same adapter.

If the adapter use is “Shared”: Only your program tasks have access

to the node’s CPU, but other

program’s tasks can share the

adapter.

Both the adapter and CPU can be

used by a number of your program’s

tasks and other users.

Notes:

1. When using LoadLeveler, the US communication subsystem library does not

require dedicated use of the high performance switch on the node. Adapter use

will be defaulted, as in Table 8 on page 19, but shared usage may be specified.

2. Adapter/CPU usage specification is only enforced for jobs using LoadLeveler

for node allocation.

Generating an output host list file: When running parallel programs using

LoadLeveler, you can generate an output host list file of the nodes that

LoadLeveler allocated. When you have LoadLeveler perform nonspecific node

allocation from SP system pools, this enables you to learn which nodes were

allocated. This information is vital if you want to perform some postmortem

analysis or file cleanup on those nodes, or if you want to rerun the program using

the same nodes. To generate a host list file, set the MP_SAVEHOSTFILE

environment variable to a file name. You can specify this using a relative or full

path name. As with most POE environment variables, you can temporarily

override the value of MP_SAVEHOSTFILE using its associated command-line flag

-savehostfile. For example, to save LoadLeveler’s node allocation into a file called

/u/hinkle/myhosts, you could:

 Set the MP_SAVEHOSTFILE environment variable: Use the -savehostfile flag when invoking the program:

ENTER

export MP_SAVEHOSTFILE=/u/hinkle/myhosts

ENTER

poe program -savehostfile /u/hinkle/myhosts

Each record in the output host list file will be the original nonspecific pool request.

Following each record will be comments indicating the specific node that was

allocated. The specific node is identified by:

v hostname

v external IP address

v adapter IP address (which may be the same as the external IP address)

For example, say the input host list file contains the following records:

@mypool

@mypool

@mypool

20 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|

|

The following is a representation of the output hostlist file.

host1_name

! 9.117.11.47 9.117.8.53

!@mypool

host1_name

! 9.117.11.47 9.117.8.53

!@mypool

host1_name

! 9.117.11.47 9.117.8.53

!@mypool

Note: The name of your output host list file can be the same as your input host

list file. If a file of the same name already exists, it is overwritten by the

output host list file.

Step 3c: Set the MP_HOSTFILE environment variable

 You need to set the MP_HOSTFILE environment

variable if:

You do not need to set the MP_HOSTFILE environment

variable if:

v you are using a host list file other than the default

./host.list

v you are requesting nonspecific node allocation without

a host list file.

If your host list file is the default ./host.list

The default host list file used by the Partition Manager to allocate nodes is called

host.list and is located in your current directory. You can specify a file other than

host.list by setting the environment variable MP_HOSTFILE to the name of a host

list file, or by using either the -hostfile or -hfile flag when invoking the program.

In either case, you can specify the file using its relative or full path name. For

example, say you want to use the host list file myhosts located in the directory

/u/hinkle. You could:

 Set the MP_HOSTFILE environment variable: Use the -hostfile flag when invoking the program:

ENTER

export MP_HOSTFILE=/u/hinkle/myhosts

ENTER

poe program -hostfile /u/hinkle/myhosts

 or poe program -hfile /u/hinkle/myhosts

If you are using LoadLeveler for nonspecific node allocation from a single pool

specified by MP_RMPOOL, and a host list file exists in the current directory, you

must set MP_HOSTFILE to an empty string or to the word “NULL”. Otherwise

the Partition Manager uses the host list file. You can either:

Chapter 2. Executing parallel programs 21

Set the MP_HOSTFILE environment variable: Use the -hostfile flag when invoking the program:

ENTER

export MP_HOSTFILE=

 or

 export MP_HOSTFILE=″″

 or

 export MP_HOSTFILE=NULL

ENTER

poe program -hostfile ″″

 or poe program -hostfile NULL

Step 3d: Set the MP_RESD environment variable

To indicate whether or not LoadLeveler should be used to allocate nodes, you set

the MP_RESD environment variable to yes or no. As specified in Table 5 on page

13 and Table 6 on page 14, MP_RESD controls whether or not the Partition

Manager connects to LoadLeveler to allocate processor nodes.

If you are allocating nodes that are not part of a LoadLeveler cluster, MP_RESD

should be set to no. If MP_RESD is set to yes, only nodes within the LoadLeveler

cluster can be allocated.

If you are allocating nodes of a pSeries or RS/6000 network cluster, you do not

have LoadLeveler and therefore should set MP_RESD to no. If you are using a

mixed system, you may set MP_RESD to yes. However, LoadLeveler only has

knowledge of nodes that are part of the LoadLeveler cluster. If the additional

pSeries or RS/6000 processors are not part of the LoadLeveler cluster, you must

also use a host list file to allocate them, and cannot set MP_RESD to yes in that

case.

As with most POE environment variables, you can temporarily override the value

of MP_RESD using its associated command-line flag -resd. For example, to specify

that you want the Partition Manager to connect LoadLeveler to allocate nodes, you

could:

 Set the MP_RESD environment variable: Use the -resd flag when invoking the program:

ENTER

export MP_RESD=yes

ENTER

poe program -resd yes

You can also set MP_RESD to an empty string. If set to an empty string, or if not

set, the default value of MP_RESD is interpreted as yes or no depending on the

context. Specifically, the value of MP_RESD will be determined by the value of

MP_EUILIB and whether or not you are using a host list file. The following table

shows how the context determines the value of MP_RESD.

MP_EUILIB setting and you are using a host list file:

and you are not using a host list

file:

If MP_EUILIB is set to ip, an empty

string, the word ″NULL″, or if not

set:

MP_RESD is interpreted as no by

default, unless:

v the host list file includes pool

requests, or

v the MP_LLFILE environment

variable is set (or the -llfile

command-line flag is used).

MP_RESD is interpreted as yes by

default.

22 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

MP_EUILIB setting and you are using a host list file:

and you are not using a host list

file:

If MP_EUILIB is set to us: MP_RESD is interpreted as yes by

default.

MP_RESD is interpreted as yes by

default.

Note: When running POE from a workstation that is external to the LoadLeveler

cluster, the LoadL.so fileset must be installed on the external node (see Using

and Administering LoadLeveler and IBM Parallel Environment for AIX:

Installation for more information).

Step 3e: Set the MP_EUILIB environment variable

During execution, the tasks of your program can communicate via calls to message

passing routines. The message passing routines in turn call communication

subsystem routines which enable the processor nodes to exchange the message

data. Before you invoke your program, you need to decide which communication

subsystem implementation you wish to use – the Internet Protocol (IP)

communication subsystem or the User Space (US) communication subsystem.

v The IP communication subsystem implementation uses the Internet Protocol for

communication among processor nodes. If you do not have the high

performance switch feature, you must use the IP communication subsystem.

v The US communication subsystem implementation uses the User Space protocol

across the high performance communication adapter. It allows you to drive the

switch adapter directly from your parallel tasks. You can only use the US

communication subsystem when running on a system configured with the high

performance switch feature.

The MP_EUILIB environment variable, or its associated command-line flag -euilib,

is used to indicate which communication subsystem implementation you are using.

POE needs to know which communication subsystem implementation to

dynamically link in as part of your executable when you invoke it. If you want the

IP communication subsystem, MP_EUILIB or -euilib should specify ip. If you

want the US communication subsystem, MP_EUILIB or -euilib should specify us.

In either case, the specification is case-sensitive.

For example, say you want to dynamically link in the communication subsystem at

execution time. You could:

 Set the MP_EUILIB environment variable: Use the -euilib flag when invoking the program:

ENTER

export MP_EUILIB=ip or us

ENTER

poe program -euilib ip or us

Note: When you invoke a parallel program, your Partition Manager looks to the

directory /usr/lpp/ppe.poe/lib for the message passing interface and the

communication subsystem implementation. If you are running on a pSeries

or RS/6000 network cluster, this is the actual location of the message

passing interface library. If you are running on an SP system,

/usr/lpp/ppe.poe/lib contains symbolic links to the actual library location.

Consult your system administrator for the actual location of the message

passing library if necessary.

You can make POE look to a directory other than /usr/lpp/ppe.poe/lib by

setting the MP_EUILIBPATH environment variable or its associated

command-line flag -euilibpath. For example, say the communication

Chapter 2. Executing parallel programs 23

|
|
|
|
|
|
|
|

|
|
|

subsystem library implementations were moved to /usr/altlib. To instruct the

Partition Manager to look there, you could:

 Set the MP_EUILIBPATH environment variable: Use the -euilibpath flag when invoking the program:

ENTER

export MP_EUILIBPATH=/usr/altlib

ENTER

poe program -euilibpath /usr/altlib

The expected library for loading the communication subsystem implementation is

in directory /usr/lpp/ppe.poe/lib/$MP_EUILIB. Setting the MP_EUILIBPATH

environment variable causes POE to try to load the communication subsystem

from the path $MP_EUILIBPATH:$MP_EUILIBPATH/$MP_EUILIB. If the

expected libraries are not in the requested path, they will be loaded from the

library path for the IP communication subsystem implementation used when the

program was compiled – $MP_PREFIX/ppe.poe/lib/ip. MP_PREFIX can be set by the

user, but is normally /usr/lpp. Thus the default library path is normally

/usr/lpp/ppe.poe/lib/ip, provided the library is not specified by the MP_EUILIB

and/or MP_EUILIBPATH environment variables.

Step 3f: Set the MP_EUIDEVICE environment variable

 You need to set the MP_EUIDEVICE environment

variable if:

You do not need to set the MP_EUIDEVICE

environment variable if:

you have set the MP_EUILIB environment variable to ip,

and are using LoadLeveler for node allocation.

you have set the MP_EUILIB environment variable to us.

The Partition Manager assumes that MP_EUIDEVICE is

csss – the high performance switch adapter.

If you are using LoadLeveler, you can specify which adapter set to use for message

passing for IP, one of the adapters defined in the LoadLeveler administration file;

for US, selection of single (css0 or sn_single) or multiple (csss or sn_all) adapters

per task. The MP_EUIDEVICE environment variable and its associated

command-line flag -euidevice are used to select an alternate adapter set for

communication among processor nodes. If neither MP_EUIDEVICE device nor the

-euidevice flag is set for IP, the communication subsystem library uses the external

IP address of each remote node. The following table shows the possible,

case-sensitive, settings for MP_EUIDEVICE.

 Setting the MP_EUIDEVICE environment variable to: Selects:

en0 The Ethernet adapter.

fi0 The FDDI adapter.

tr0 The token-ring adapter.

css0 The high performance switch adapter.

csss The SP switch 2 adapter in a multi-fabric configuration,

or the pSeries HPS adapter to request multiple windows

per task.

sn_single One pSeries high performance window per task.

sn_all pSeries High Performance Switch to specify multiple

(striped) windows per task.

For example, say you want to use IP over the high performance switch. The nodes

have been initialized for IP as described in IBM Parallel System Support Programs for

24 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|

|
|
|
|
|
|
|
|
|

AIX: Installation and Migration Guide , and you have already set the MP_EUILIB

environment variable to ip. To specify the high performance switch, you could:

 Set the MP_EUIDEVICE environment variable: Use the -euidevice flag when invoking the program:

ENTER

export MP_EUIDEVICE=css0

ENTER

poe program -euidevice css0

Notes:

1. If you do not set the MP_EUIDEVICE environment variable, the default is the

adapter set used as the external network address for IP, and for User Space the

default is csss.

2. If using LoadLeveler for node allocation, the adapters must be configured in

LoadLeveler. See Using and Administering LoadLeveler for more information.

3. Existing User Space applications that set MP_EUIDEVICE/-euidevice to

sn_single or css0 on systems using multiple adapters and multiple networks will

not benefit from the performance improvements provided by using the sn_all or

csss value. In this case, you may want to change the MP_EUIDEVICE/-
euidevice settings for such applications. Examples of systems with multiple

networks and multiple adapters are SP-Switch2 systems and pSeries High

Performance Switch systems with PE Version 4.1.1 or later levels of code. Note

that User Space applications can set MP_EUIDEVICE/-euidevice to sn_single

or css0 on systems with multiple adapters and a single network. Examples of

systems with multiple adapters and a single network are HPS (Federation)

systems with PE Version 4.1.0 levels of code.

Step 3g: Set the MP_MSG_API environment variable

The MP_MSG_API environment variable, or its associated command line option,

is used to indicate to POE which message passing API is being used by a parallel

job.

 You need to set the MP_MSG_API environment

variable if:

You do not need to set the MP_MSG_API environment

variable if:

A parallel job is using LAPI alone or in conjunction with

MPI.

A parallel job is using MPI only.

Step 3h: Set the MP_RMPOOL environment variable

 You need to set the MP_RMPOOL environment

variable if:

You do not need to set the MP_RMPOOL environment

variable if:

You are allocating nodes using LoadLeveler and want

nonspecific node allocation from a single pool.

You are allocating nodes using a host list file.

After installation of a LoadLeveler cluster, your system administrator divides its

processor nodes into a number of pools. Each pool has an identifying pool name or

number. When using LoadLeveler, and you want nonspecific node allocation from

a single pool, you need to set the MP_RMPOOL environment variable to the name

or number of that pool. If the value of the MP_RMPOOL environment variable is

numeric, that pool number must be configured in LoadLeveler. If the value of

MP_RMPOOL contains any nonnumeric characters, that pool name must be

configured as a feature in LoadLeveler.

If you need information about available LoadLeveler pools, use the command

llstatus. To use llstatus on a workstation that is external to the LoadLeveler cluster,

Chapter 2. Executing parallel programs 25

|
|
|

|
|
|

|
|
|

the LoadL.so fileset must be installed on the external node (see Using and

Administering LoadLeveler and IBM Parallel Environment for AIX: Installation for more

information).

ENTER

llstatus -l (lower case L)

 LoadLeveler lists information about all LoadLeveler pools and/or features.

 For more information on the llstatus command and on LoadLeveler pools, refer to

Using and Administering LoadLeveler.

As with most POE environment variables, you can temporarily override the value

of MP_RMPOOL using its associated command-line flag -rmpool. To specify pool

6, for example, you could:

 Set the MP_RMPOOL environment variable: Use the -rmpool flag when invoking the program:

ENTER

export MP_RMPOOL=6

ENTER

poe program -rmpool 6

For additional control over how LoadLeveler allocates nodes within the pool

specified by MP_RMPOOL or -rmpool, you can use the MP_NODES or

MP_TASKS_PER_NODE environment variables or their associated command line

options.

v The MP_NODES and MP_TASKS_PER_NODE settings are ignored unless

MP_RMPOOL is set and no hostfile is used. A restarted job may actually use

these previously ignored settings if MP_RMPOOL is used when restarting. See

the poerestart man page in Appendix A, “Parallel environment commands” for

more information.

v MP_NODES or -nodes specifies the number of physical nodes on which to run

the parallel tasks. You may use it alone or in conjunction with -tasks_per_node

and/or -procs, as described in Table 10 below.

v MP_TASKS_PER_NODE or -tasks_per_node specifies the number of tasks to be

run on each of the physical nodes. You may use it in conjunction with -nodes

and/or -procs, as described in Table 10 below, but may not use it alone.

v The maximum number of nodes is 512. The maximum number of tasks is 4096.

 Table 10. LoadLeveler node allocation

MP_PROCS

set? MP_TASKS_PER_NODE set?

MP_NODES

set? Conditions and Results

Yes Yes Yes MP_TASKS_PER_NODE multiplied by

MP_NODES must equal MP_PROCS,

otherwise an error occurs.

Yes Yes No MP_TASKS_PER_NODE must divide evenly

into MP_PROCS, otherwise an error occurs.

Yes No Yes Tasks 0..m-1 are allocated to the first node,

tasks m..2m-1 are allocated to the second node,

and so on, where m is

MP_PROCS/MP_NODES rounded up.

Yes No No The parallel job will run with the indicated

number of MP_PROCS (p) on p nodes.

26 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Table 10. LoadLeveler node allocation (continued)

MP_PROCS

set? MP_TASKS_PER_NODE set?

MP_NODES

set? Conditions and Results

No Yes Yes The parallel job will consist of

MP_TASKS_PER_NODE multiplied by

MP_NODES tasks.

No Yes No An error occurs. MP_NODES or MP_PROCS

must be specified with

MP_TASKS_PER_NODE.

No No Yes One parallel task will be run on each of n

nodes.

No No No One parallel task will be run on one node.

Note: The examples in this table use the environment variable setting to illustrate each of the three options. The

associated command line options may also be used.

Step 4: Invoke the executable

Note:

In order to perform this step, you need to have a user account on, and be

able to remotely login to, each of the processor nodes. In addition, each user

account must be properly authorized based on the security methods

configured by the system administrator. Refer to the section “POE user

authorization” on page 46 for specific details.

The poe command enables you to load and execute programs on remote nodes.

You can use it to:

v load and execute an SPMD program onto all nodes of your partition. For more

information, see “Invoking an SPMD program” on page 28.

v individually load the nodes of your partition. This capability is intended for

MPMD programs. For more information, see “Invoking an MPMD program” on

page 29.

v load and execute a series of SPMD or MPMD programs, in individual job steps,

on the same partition. For more information, see “Loading a series of programs

as job steps” on page 31.

v run nonparallel programs on remote nodes. For more information, see “Invoking

a nonparallel program on remote nodes” on page 33.

When you invoke poe, the Partition Manager allocates processor nodes for each

task and initializes the local environment. It then loads your program, and

reproduces your local environment, on each processor node. The Partition Manager

also passes the option list to each remote node. If your program is in a shared file

system, the Partition Manager loads a copy of it on each node. If your program is

in a private file system, you will have already manually copied your executable to

the nodes as described in “Step 2: Copy files to individual nodes” on page 9. If

you are using the dynamic message passing interface, the appropriate

communication subsystem library implementation (IP or US) is automatically

loaded at this time.

Since the Partition Manager attempts to reproduce your local environment on each

remote node, your current directory is important. When you invoke poe, the

Partition Manager will, immediately before running your executable, issue the cd

Chapter 2. Executing parallel programs 27

command to your current working directory on each remote node. If you are in a

local directory that does not exist on remote nodes, you will get an error as the

Partition Manager attempts to change to that directory on remote nodes. Typically,

this will happen when you invoke poe from a directory under /tmp. We suggest

that you invoke poe from a file system that is mounted across the system. If it is

important that the current directory be under /tmp, make sure that directory exists

on all the remote nodes. If you are running in the C shell, see “Running programs

under the C shell” on page 72.

Note: The Parallel Environment opens several file descriptors before passing

control to the user. The Parallel Environment will not assign specific file

descriptors other than standard in, standard out, and standard error.

Before using the poe command, you can first specify which programming model

you are using by setting the MP_PGMMODEL environment variable to either

spmd or mpmd. As with most POE environment variables, you can temporarily

override the value of MP_PGMMODEL using its associated command-line flag

-pgmmodel. For example, if you want to run an MPMD program, you could:

 Set the MP_PGMMODEL environment variable: Use the -pgmmodel flag when invoking the program:

ENTER

export MP_PGMMODEL=mpmd

ENTER

poe program -pgmmodel mpmd

If you do not set the MP_PGMMODEL environment variable or -pgmmodel flag,

the default programming model is SPMD.

Note: If you load your executable from a mounted file system, you may

experience an initial delay while the program is being initialized on all

nodes. You may experience this delay even after the program begins

executing, because individual pages of the program are brought in on

demand. This is particularly apparent during initialization of the message

passing interface; since individual nodes are synchronized, there are

simultaneous demands on the network file transfer system. You can

minimize this delay by copying the executable to a local file system on each

node, using the mcp command.

Invoking an SPMD program

If you have an SPMD program, you want to load it as a separate task on each

node of your partition. To do this, follow the poe command with the program

name and any options. The options can be program options or any of the POE

command-line flags shown in Appendix B, “POE environment variables and

command-line flags,” on page 131. You can also invoke an SPMD program by

entering the program name and any options:

ENTER

poe program [options]

 or

 program [options]

You can also enter poe without a program name:

ENTER

poe [options]

 Once your partition is established, a prompt appears.

28 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

ENTER

the name of the program you want to load. You can follow the program

name with any program options or a subset of the POE flags.

Note: For National Language Support, POE displays messages located in an

externalized message catalog. POE checks the LANG and NLSPATH

environment variables, and if either is not set, it will set up the following

defaults:

v LANG=C

v NLSPATH=/usr/lib/nls/msg/%L/%N

For more information about the message catalog, see “National language

support (NLS)” on page x.

Invoking an MPMD program

Note: You must set the MP_PGMMODEL environment variable or -pgmmodel

flag to invoke an MPMD program.

With an SPMD application, the name of the same executable is sent to, and runs

on, each of the processor nodes of your partition. If you are invoking an MPMD

application, you are dealing with more than one program and need to individually

load the nodes of your partition.

For example, say you have two programs – master and workers – designed to run

together and communicate via calls to message passing subroutines. The program

master is designed to run on one processor node. The workers program is designed

to run as separate tasks on any number of other nodes. The master program will

coordinate and synchronize the execution of all the worker tasks. Neither program

can run without the other, as master only does sends and the workers tasks only do

receives.

You can establish a partition and load each node individually using:

v standard input (from the keyboard or redirected)

v a POE commands file

Loading nodes individually from standard input: To establish a partition and

load each node individually using STDIN:

ENTER

poe [options]

 The Partition Manager allocates the processor nodes of your partition.

Once your partition is established, a prompt containing both the logical

node identifier 0 and the actual host name it maps to, appears.

ENTER

the name of the program you want to load on node 0. You can follow the

program name with any program options or a subset of the POE flags.

 A prompt for the next node in the partition displays.

ENTER

the name of the program you want to load on each processor node as you

are prompted.

 When you have specified the program to run on the last node of your

partition, the message “Partition loaded...” displays and execution begins.

Chapter 2. Executing parallel programs 29

For additional illustration, the following shows the command prompts that would

appear, as well as the program names you would enter, to load the example master

and workers programs. This example assumes that the MP_PROCS environment

variable is set to 5.

% poe

0:host1_name> master [options]

1:host2_name> workers [options]

2:host3_name> workers [options]

3:host4_name> workers [options]

4:host5_name> workers [options]

Partition loaded...

Note: You can use the following POE command-line flags on individual program

names, but not those that are used to set up the partition.

v -infolevel or -ilevel

Loading nodes individually using a POE commands file: The MP_CMDFILE

environment variable, and its associated command-line flag -cmdfile, let you

specify the name of a POE commands file. You can use such a file when

individually loading a partition – thus freeing STDIN. The POE commands file

simply lists the individual programs you want to load and run on the nodes of

your partition. The programs are loaded in task order. For example, say you have a

typical master/workers MPMD program that you want to run as 5 tasks. Your

POE commands file would contain:

master [options]

workers [options]

workers [options]

workers [options]

workers [options]

Once you have created a POE commands file, you can specify it using a relative or

full path name on the MP_CMDFILE environment variable or -cmdfile flag. For

example, if your POE commands file is /u/hinkle/mpmdprog, you could:

 Set the MP_CMDFILE environment variable: Use the -cmdfile flag on the poe command:

ENTER

export MP_CMDFILE=/u/hinkle/mpmdprog

ENTER

poe -cmdfile /u/hinkle/mpmdprog

Once you have set the MP_CMDFILE environment variable to the name of the

POE commands file, you can individually load the nodes of your partition. To do

this:

ENTER

poe [options]

30 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

The Partition Manager allocates the processor nodes of your partition. The

programs listed in your POE commands file are run on the nodes of your

partition.

Loading a series of programs as job steps

By default, the Partition Manager releases your partition when your program

completes its run. However, you can set the environment variable MP_NEWJOB,

or its associated command-line flag -newjob, to specify that the Partition Manager

should maintain your partition for multiple job steps.

For example, say you have three separate SPMD programs. The first one sets up a

particular computation by adding some files to /tmp on each of the processor nodes

on the partition. The second program does the actual computation. The third

program does some postmortem analysis and file cleanup. These three parallel

programs must run as job steps on the same processor nodes in order to work

correctly. While specific node allocation using a host list file might work, the

requested nodes might not be available when you invoke each program. The better

solution is to instruct the Partition Manager to maintain your partition after

execution of each program completes. You can then read multiple job steps from:

v standard input

v a POE commands file using the MP_CMDFILE environment variable.

In either case, you must first specify that you want the Partition Manager to

maintain your partition for multiple job steps. To do this, you could:

 Set the MP_NEWJOB environment variable: Use the -newjob flag on the poe command:

ENTER

export MP_NEWJOB=yes

ENTER

poe -newjob yes

Notes:

1. You can only load a series of programs as job steps using the poe command.

You cannot do this with the pdbx parallel debugger command.

2. poe is its own shell. Whether successive steps run after a step completes is a

function of the exit code, as described in IBM Parallel Environment for AIX: MPI

Subroutine Reference

Reading job steps from standard input: Say you want to run three SPMD

programs – setup, computation, and cleanup – as job steps on the same partition.

Assuming STDIN is keyboard entry, MP_PGMMODEL is set to spmd, and

MP_NEWJOB is set to yes, you would:

ENTER

poe [poe-options]

 The Partition Manager allocates the processor nodes of your partition, and

the following prompt displays:

0031-503 Enter program name (or quit):

ENTER

setup [program-options]

 The program setup executes on all nodes of your partition. When execution

completes, the following prompt displays:

0031-503 Enter program name (or quit):

ENTER

computation [program-options]

Chapter 2. Executing parallel programs 31

The program computation executes on all nodes of your partition. When

execution completes, the following prompt displays:

0031-503 Enter program name (or quit):

ENTER

cleanup [program-options]

 The program cleanup executes on all nodes of your partition. When

execution completes, the following prompt displays:

0031-503 Enter program name (or quit):

ENTER

quit

 or

 <Ctrl-d>

 The Partition Manager releases the nodes of your partition.

Notes:

1. You can also run a series of MPMD programs in job step fashion from STDIN.

If MP_PGMMODEL is set to mpmd, the Partition Manager will, after each step

completes, prompt you to individually reload the partition as described in

“Loading nodes individually from standard input” on page 29.

2. When MP_NEWJOB is yes, the Partition Manager, by default, looks to STDIN

for job steps. However, if the environment variable MP_CMDFILE is set to the

name of a POE commands file as described in “Reading job steps from a POE

commands file,” the Partition Manger will look to the commands file instead.

To ensure that job steps are read from STDIN, check that the MP_CMDFILE

environment variable is unspecified.

Multi-step STDIN for newjob mode: POE’s STDIN processing model allows

redirected STDIN to be passed to all steps of a newjob sequence, when the

redirection is from a file. If redirection is from a pipe, POE does not distribute the

input to each step, only to the first step.

Reading job steps from a POE commands file: The MP_CMDFILE environment

variable, and its associated command-line flag -cmdfile, lets you specify the name

of a POE commands file. If MP_NEWJOB is yes, you can have the Partition

Manager read job steps from a POE commands file. The commands file in this case

simply lists the programs you want to run as job steps. For example, say you want

to run the three SPMD programs setup, computation, and cleanup as job steps on the

same partition. Your POE commands file would contain the following three lines:

setup [program-options]

computation [program-options]

cleanup [program-options]

Program-options represent the actual values you need to specify.

If you are loading a series of MPMD programs, the POE commands file is also

responsible for individually loading the partition. For example, say you had three

master/worker MPMD job steps that you wanted to run as 4 tasks on the same

partition. The following is a representation of what your POE commands file

would contain. Options represent the actual values you need to specify.

32 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

master1 [options]

workers1 [options]

workers1 [options]

workers1 [options]

master2 [options]

workers2 [options]

workers2 [options]

workers2 [options]

master3 [options]

workers3 [options]

workers3 [options]

workers3 [options]

While you could also redirect STDIN to read job steps from a file, a POE

commands file gives you more flexibility by not tying up STDIN. You can specify a

POE commands file using its relative or full path name. Say your POE commands

file is called /u/hinkle/jobsteps. To specify that the Partition Manager should read job

steps from this file rather than STDIN, you could:

 Set the MP_CMDFILE environment variable: Use the -cmdfile flag on the poe command:

ENTER

export MP_CMDFILE=/u/hinkle/jobsteps

ENTER

poe -cmdfile /u/hinkle/jobsteps

Once MP_NEWJOB is set to yes, and MP_CMDFILE is set to the name of your

POE commands file, you would:

ENTER

poe [poe-options]

 The Partition Manager allocates the processor nodes of your partition, and

reads job steps from your POE commands file. The Partition Manager does

not release your partition until it reaches the end of your commands file.

Invoking a nonparallel program on remote nodes

You can also use POE to run nonparallel programs on the remote nodes of your

partition. Any executable (binary file, shell script, UNIX utility) is suitable, and it

does not need to have been compiled with mpcc_r, mpCC_r, or mpxlf_r. For

example, if you wanted to check the process status (using the AIX command ps)

for all remote nodes in your partition, you would:

ENTER

poe ps

 The process status for each remote node is written to standard out

(STDOUT) at your home node. How STDOUT from all the remote nodes is

handled at your home node depends on the output mode. See “Managing

standard output (STDOUT)” on page 39 for more information.

Chapter 2. Executing parallel programs 33

Controlling program execution

This section describes a number of additional POE environment variables for

monitoring and controlling program execution. It describes how to use the:

v MP_EUIDEVELOP environment variable to specify that you want to run your

program in message passing develop mode. In this mode, more detailed

checking of your program is performed.

v MP_RETRY environment variable to make POE wait for processor nodes to

become available.

v MP_RETRYCOUNT environment variable to specify the number of times the

Partition Manager should request nodes before returning.

v MP_NOARGLIST and MP_FENCE environment variable to make POE ignore

arguments.

v MP_STDINMODE and MP_HOLD_STDIN environment variables to manage

standard input.

v MP_STDOUTMODE environment variable to manage standard output.

v MP_LABELIO environment variable to label message output with task

identifiers.

v MP_INFOLEVEL environment variable to specify the level of messages you

want reported to standard error.

v MP_PMDLOG environment variable to generate a diagnostic log on remote

nodes.

v MP_IONODEFILE environment variable to specify an I/O node file that

indicates which nodes should participate in parallel I/O.

v MP_CKPTFILE environment variable to define the base name of the checkpoint

file when checkpointing a program. See “Checkpointing and restarting

programs” on page 44 for more information.

v MP_CKPTDIR environment variable to define the directory where the

checkpoint file will reside when checkpointing a program. See “Checkpointing

and restarting programs” on page 44 for more information.

v MP_TASK_AFFINITY environment variable to attach each task of a parallel job

to one of the system resource sets (rsets) at the Multi-chip Module (MCM) level.

See “Managing task affinity on large SMP nodes” on page 46 for more

information.

For a complete listing of all POE environment variables, see Appendix B, “POE

environment variables and command-line flags,” on page 131.

Specifying develop mode

You can run programs in one of two modes – develop mode or run mode. In develop

mode, intended for developing applications, the message passing interface

performs more detailed checking during execution. Because of the additional

checking it performs, develop mode can significantly slow program performance.

In run mode, intended for completed applications, only minimal checking is done.

While run mode is the default, you can use the MP_EUIDEVELOP environment

variable to specify message passing develop mode. As with most POE environment

variables, MP_EUIDEVELOP has an associated command-line flag -euidevelop. To

specify MPI develop mode, you could:

34 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Set the MP_EUIDEVELOP environment variable: Use the -euidevelop flag when invoking the program:

ENTER

export MP_EUIDEVELOP=yes

ENTER

poe program -euidevelop yes

To later go back to run mode, set MP_EUIDEVELOP to no.

 Set the MP_EUIDEVELOP environment variable: Use the -euidevelop flag when invoking the program:

ENTER

export MP_EUIDEVELOP=DEB

ENTER

poe program -euidevelop DEB

To stop parameter checking, set MP_EUIDEVELOP to min, for “minimum”.

Making POE wait for processor nodes

If you are using Loadleveler, and there are not enough available nodes to run your

program, the Partition Manager, by default, returns immediately with an error.

Your program does not run. Using the MP_RETRY and MP_RETRYCOUNT

environment variables, however, you can instruct the Partition Manager to repeat

the node request a set number of times at set intervals. Each time the Partition

Manager repeats the node request, it displays the following message:

Retry allocation press control-C to terminate

The MP_RETRY environment variable, and its associated command-line flag -retry,

specifies the interval (in seconds) to wait before repeating the node request. The

MP_RETRYCOUNT environment variable, and its associated command-line flag

-retrycount, specifies the number of times the Partition Manager should make the

request before returning. For example, if you wanted to retry the node request five

times at five minute (300 second) intervals, you could:

 Set the MP_RETRY and MP_RETRYCOUNT

environment variables:

Use the -retry and -retrycount flags when invoking the

program:

ENTER

export MP_RETRY=300

 export MP_RETRYCOUNT=5

ENTER

poe program -retry 300 -retrycount 5

Note: If the MP_RETRYCOUNT environment variable or the -retrycount

command-line flag is used, the MP_RETRY environment variable or the

-retry command-line flag must be set to at least one second.

If MP_RETRY or -retry is set to the character string ″wait″, instead of a number, no

retries are attempted by POE, and the job remains enqueued in LoadLeveler until

LoadLeveler either schedules or cancels the job. ″wait″ is not case sensitive.

Making POE ignore arguments

When you invoke a parallel executable, you can specify an argument list consisting

of a number of program options and POE command-line flags. The argument list is

parsed by POE – the POE command-line flags are removed and the remainder of

the list is passed on to the program. If any of your program arguments are

identical to POE command-line flags, however, this can cause problems. For

example, say you have a program that takes the argument -retry. You invoke the

Chapter 2. Executing parallel programs 35

program with the -retry option, but it does not execute correctly. This is because

there is also a POE command-line flag -retry. POE parses the argument list and so

the -retry option is never passed on to your program. There are two ways to

correct this sort of problem. You can:

v make POE ignore the entire argument list using the MP_NOARGLIST

environment variable.

v make POE ignore a portion of the argument list using the MP_FENCE

environment variable.

Making POE ignore the entire argument list

When you invoke a parallel executable, POE, by default, parses the argument list

and removes all POE command-line flags before passing the rest of the list on to

the program. Using the environment variable MP_NOARGLIST, you can prevent

POE from parsing the argument list. To do this:

ENTER

export MP_NOARGLIST=yes

When the MP_NOARGLIST environment variable is set to yes, POE does not

examine the argument list at all. It simply passes the entire list on to the program.

For this reason, you can not use any POE command-line flags, but must use the

POE environment variables exclusively. While most POE environment variables

have associated command-line flags, MP_NOARGLIST, for obvious reasons, does

not. To specify that POE should again examine argument lists, either set

MP_NOARGLIST to no, or unset it.

ENTER

export MP_NOARGLIST=no

 or

 unset MP_NOARGLIST

Making POE ignore a portion of the argument list

When you invoke a parallel executable, POE, by default, parses the entire

argument list and removes all POE command-line flags before passing the rest of

the list on to the program. You can use a fence, however, to prevent POE from

parsing the remainder of the argument list. A fence is simply a character string you

define using the MP_FENCE environment variable. Once defined, you can use the

fence to separate those arguments you want parsed by POE from those you do not.

For example, say you have a program that takes the argument -retry. Because there

is also a POE command-line flag -retry, you need to put this argument after a

fence. To do this, you could:

ENTER

export MP_FENCE=Q

 poe program -procs 26 -infolevel 2 Q -retry RGB

While this example defines Q as the fence, keep in mind that the fence can be any

character string. Any arguments placed after the fence are passed by POE,

unexamined, to the program. While most POE environment variables have

associated command-line flags, MP_FENCE does not.

POE argument limits

The maximum length for POE program arguments is 24,576 bytes. This is a fixed

limit and cannot be changed. If this limit is exceeded, an error message will be

36 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

displayed and POE will terminate. The length of the remote program arguments

that can be passed on POE’s command line is 24,576 bytes minus the number of

bytes that are used for POE arguments.

Managing standard input, output, and error

POE lets you control standard input (STDIN), standard output (STDOUT), and

standard error (STDERR) in several ways. You can continue using the traditional

I/O manipulation techniques such as redirection and piping, and can also:

v determine whether a single task or all parallel tasks should receive data from

STDIN.

v determine whether a single task or all parallel tasks should write to STDOUT. If

all tasks are writing to STDOUT, you can further define whether or not the

messages are ordered by task id.

v specify the level of messages that will be reported to STDERR during program

execution.

v specify that messages to STDOUT and STDERR should be labeled by task id.

Managing standard input (STDIN)

STDIN is the primary source of data going into a command. Usually, STDIN refers

to keyboard input. If you use redirection or piping, however, STDIN could refer to

a file or the output from another command (see “Using MP_HOLD_STDIN” on

page 38). How you manage STDIN for a parallel application depends on whether

or not its parallel tasks require the same input data. Using the environment

variable MP_STDINMODE or the command-line flag -stdinmode, you can specify

that:

v all tasks should receive the same input data from STDIN. This is multiple input

mode.

v STDIN should be sent to a single task of your partition. This is single input mode.

v no task should receive input data from STDIN.

Multiple Input Mode: Setting MP_STDINMODE to all indicates that all tasks

should receive the same input data from STDIN. The home node Partition

Manager sends STDIN to each task as it is read.

To specify multiple input mode so all tasks receive the same input data from

STDIN, you could:

 Set the MP_STDINMODE environment variable: Use the -stdinmode flag when invoking the program:

ENTER

export MP_STDINMODE=all

ENTER

poe program -stdinmode all

Note: If you do not set the MP_STDINMODE environment variable or use the

-stdinmode command-line flag, multiple input mode is the default.

Single Input Mode: There are times when you only want a single task to read

from STDIN. To do this, you set MP_STDINMODE to the appropriate task id. For

example, say you have an MPMD application consisting of two programs – master

and workers. The program master is designed to run as a single task on one

processor node. The workers program is designed to run as separate tasks on any

number of other nodes. The master program handles all I/O, so only its task needs

to read STDIN. If master is running as task 0, you need to specify that only task 0

should receive STDIN. To do this, you could:

Chapter 2. Executing parallel programs 37

Set the MP_STDINMODE environment variable: Use the -stdinmode flag when invoking the program:

ENTER

export MP_STDINMODE=0

ENTER

poe program -stdinmode 0

Using MP_HOLD_STDIN

Message passing initialization occurs when MPI_INIT is called. If MPI_Init or

LAPI_Init is called before any STDIN is read, the following information under

“Using redirected STDIN” applies. If, however, all STDIN is read before

MPI_INIT is called, then MP_HOLD_STDIN should be set to “no”, to allow the

STDIN data to be sent to the user’s executable by POE.

The environment variable MP_HOLD_STDIN is used to defer sending of STDIN

from the home node to the remote node(s) until the message passing library has

been initialized. The variable must be set to “yes” when using POE to invoke a

program which: (1) has been compiled with mpcc_r, mpxlf_r, or mpCC_r, and (2)

will be reading STDIN from other than the keyboard (redirection or piping).

Failing to export this environment variable when running these programs could

likely result in the user program hanging.

In addition, if a program invoked using POE has not been compiled with mpcc_r,

mpxlf_r, or mpCC_r, the environment variable must not be set (or set to “no”) to

ensure that STDIN is delivered to the remote node(s).

To set MP_HOLD_STDIN correctly, you need to know the relative order of your

program’s use of stdin data and initialization of the message passing library.

Using redirected STDIN

Note: Wherever the following description refers to a POE environment variable

(starting with MP_), the use of the associated command line option

produces the same effect, with the exception of MP_HOLD_STDIN, which

has no associated command line option.

A POE process can use its STDIN in two ways. First, if the program name is not

supplied on the command line and no command file (MP_CMDFILE) is specified,

POE uses STDIN to resolve the names of the programs to be run as the remote

tasks. Second, any “remaining” STDIN is then distributed to the remote tasks as

indicated by the MP_STDINMODE and MP_HOLD_STDIN settings. In this dual

STDIN model, redirected STDIN can then pose two problems:

1. If using job steps (MP_NEWJOB=yes), the “remaining” STDIN is always

consumed by the remote tasks during the first job step.

2. If POE attempts program name resolution on the redirected STDIN, program

behavior can vary when using job steps, depending on the type of redirection

used and the size of the redirected STDIN.

The first problem is addressed in POE by performing a rewind of STDIN between

job steps (only if STDIN is redirected from a file, for reasons beyond the scope of

this document). The second problem is addressed by providing an additional

setting for MP_STDINMODE of “none”, which tells POE to only use STDIN for

program name resolution. As far as STDIN is concerned, “none” ever gets

delivered to the remote tasks. This provides an additional method of reliably

specifying the program name to POE, by redirecting STDIN from a file or pipe, or

by using the shell’s here-document syntax in conjunction with the “none” setting.

38 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|

If MP_STDINMODE is not set to “none” when POE attempts program name

resolution on redirected STDIN, program behavior is undefined.

The following scenarios describe in more detail the effects of using (or not using)

an MP_STDINMODE of “none” when redirecting (or not redirecting) STDIN, as

shown in the example:

 Is STDIN Redirected?

 Yes No

 Yes A B

Is MP_STDINMODE set to none?

 No C D

Scenario A

POE will use the redirected STDIN for program name resolution, only if no

program name is supplied on the command line (MP_CMDFILE is ignored when

MP_STDINMODE=none). No STDIN is distributed to the remote tasks. No

rewind of STDIN is performed when MP_STDINMODE=none. If

MP_HOLD_STDIN is set to “yes”, this is ignored because no STDIN is being

distributed.

Scenario B

POE will use the keyboard STDIN for program name resolution, only if no

program name is supplied on the command line (MP_CMDFILE is ignored when

MP_STDINMODE=none). No STDIN is distributed to the remote tasks. No

rewind of STDIN is performed when MP_STDINMODE=none (also, STDIN is not

from a file). If MP_HOLD_STDIN is set to “yes”, this is ignored because no

STDIN is being distributed.

Scenario C

POE will use the redirected STDIN for program name resolution, if required, and

will distribute “remaining” STDIN to the remote tasks. If STDIN is intended to be

used for program name resolution, program behavior is undefined in this case, since

POE was not informed of this by setting STDINMODE to “none” (see Problem 2

above). If STDIN is redirected from a file, POE will rewind STDIN between each

job step. If MP_HOLD_STDIN is set to “yes”, this feature will behave accordingly.

Scenario D

POE will use the keyboard STDIN for program name resolution, if required. Any

“remaining” STDIN is distributed to the remote tasks. No rewind of STDIN is

performed since STDIN is not from a file. If MP_HOLD_STDIN is set to “yes”, it

is ignored because STDIN is not redirected.

Managing standard output (STDOUT)

STDOUT is where the data coming from the command will eventually go. Usually,

STDOUT refers to the display. If you use redirection or piping, however, STDOUT

could refer to a file or another command. How you manage STDOUT for a parallel

application depends on whether you want output data from one task or all tasks.

If all tasks are writing to STDOUT, you can also specify whether or not output is

ordered by task id. Using the environment variable MP_STDOUTMODE, you can

specify that:

Chapter 2. Executing parallel programs 39

v all tasks should write output data to STDOUT asynchronously. This is unordered

output mode.

v output data from each parallel task should be written to its own buffer, and later

all buffers should be flushed, in task order, to STDOUT. This is ordered output

mode.

v a single task of your partition should write to STDOUT. This is single output

mode.

Unordered output mode: Setting MP_STDOUTMODE to unordered specifies that

all tasks should write output data to STDOUT asynchronously. To specify

unordered output mode, you could:

 Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER

export MP_STDOUTMODE=unordered

ENTER

poe program -stdoutmode unordered

Notes:

1. If you do not set the MP_STDOUTMODE environment variable or use the

-stdoutmode command-line flag, unordered output mode is the default.

2. If you are using unordered output mode, you will probably want the messages

labeled by task id. Otherwise it will be difficult to know which task sent which

message. See “Labeling message output” on page 41 for more information.

3. You can also specify unordered output mode from your program by calling the

MP_STDOUTMODE or mpc_stdoutmode Parallel Utility Function. Refer to IBM

Parallel Environment for AIX: MPI Subroutine Reference for more information.

4. Although the above environment variable and Parallel Utility Function are

both described as “MP_STDOUTMODE”, they are each used independently for

their specific purposes.

Ordered output mode: Setting MP_STDOUTMODE to ordered specifies ordered

output mode. In this mode, each task writes output data to its own buffer. Later,

all the task buffers are flushed, in order of task id, to STDOUT. The buffers are

flushed when:

v any one of the individual task buffers fills

v execution of the program completes.

v all tasks explicitly flush the buffers by calling the MP_FLUSH or mpc_flush

Parallel Utility Function.

v tasks change output mode using calls to Parallel Utility Functions. For more

information on Parallel Utility Functions, refer to IBM Parallel Environment for

AIX: MPI Subroutine Reference

Note: When running the parallel application under pdbx with

MP_STDOUTMODE set to ordered, there will be a difference in the

ordering from when the application is run directly under poe. The buffer

size available for the application’s STDOUT is smaller because pdbx uses

some of the buffer, so the task buffers fill up more often.

To specify ordered output mode, you could:

 Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER

export MP_STDOUTMODE=ordered

ENTER

poe program -stdoutmode ordered

40 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Note: You can also specify ordered output mode from your program by calling the

MP_STDOUTMODE or mpc_stdoutmode Parallel Utility Function. Refer to

IBM Parallel Environment for AIX: MPI Subroutine Reference for more

information.

Single output mode: You can specify that only one task should write its output

data to STDOUT. To do this, you set MP_STDOUTMODE to the appropriate task

id. For example, say you have an SPMD application in which all the parallel tasks

are sending the exact same output messages. For easier readability, you would

prefer output from only one task – task 0. To specify this, you could:

 Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER

export MP_STDOUTMODE=0

ENTER

poe program -stdoutmode 0

Note: You can also specify single output mode from your program by calling the

MP_STDOUTMODE or mpc_stdoutmode Parallel Utility Function. Refer to

IBM Parallel Environment for AIX: MPI Subroutine Reference for more

information.

Labeling message output

You can set the environment variable MP_LABELIO, or use the -labelio flag when

invoking a program, so that output from the parallel tasks of your program are

labeled by task id. While not necessary when output is being generated in single

mode, this ability can be useful in ordered and unordered modes. For example, say

the output mode is unordered. You are executing a program and receiving

asynchronous output messages from all the tasks. This output is not labeled, so

you do not know which task has sent which message. It would be clearer if the

unordered output was labeled. For example:

 7: Hello World

 0: Hello World

 3: Hello World

 23: Hello World

 14: Hello World

 9: Hello World

To have the messages labeled with the appropriate task id, you could:

 Set the MP_LABELIO environment variable: Use the -labelio flag when invoking the program:

ENTER

export MP_LABELIO=yes

ENTER

poe program -labelio yes

To no longer have message output labeled, set the MP_LABELIO environment

variable to no.

Chapter 2. Executing parallel programs 41

Setting the message reporting level for standard error (STDERR)

You can set the environment variable MP_INFOLEVEL to specify the level of

messages you want from POE. You can set the value of MP_INFOLEVEL to one of

the integers shown in the following table. The integers 0, 1, and 2 give you

different levels of informational, warning, and error messages. The integers 3

through 6 indicate debug levels that provide additional debugging and diagnostic

information. Should you require help from the IBM Support Center in resolving a

PE-related problem, you will probably be asked to run with one of the debug

levels. As with most POE environment variables, you can override

MP_INFOLEVEL when you invoke a program. This is done using either the

-infolevel or -ilevel flag followed by the appropriate integer.

This integer:

Indicates this

level of message

reporting: In other words:

0 Error Only error messages from POE are written to STDERR.

1 Normal Warning and error messages from POE are written to STDERR. This level

of message reporting is the default.

2 Verbose Informational, warning, and error messages from POE are written to

STDERR.

3 Debug Level 1 Informational, warning, and error messages from POE are written to

STDERR. Also written is some high-level debugging and diagnostic

information.

4 Debug Level 2 Informational, warning, and error messages from POE are written to

STDERR. Also written is some high- and low-level debugging and

diagnostic information.

5 Debug Level 3 Debug level 2 messages plus some additional loop detail.

6 Debug Level 4 Debug level 3 messages plus other informational error messages for the

greatest amount of diagnostic information.

Let us say you want the POE message level set to verbose. The following table

shows the two ways to do this. You could:

 Set the MP_INFOLEVEL environment variable: Use the -infolevel flag when invoking the program:

ENTER

export MP_INFOLEVEL=2

ENTER

poe program -infolevel 2

 or poe program -ilevel 2

As with most POE command-line flags, the -infolevel or -ilevel flag temporarily

override their associated environment variable.

Generating a diagnostic log on remote nodes

Using the MP_PMDLOG environment variable, you can also specify that

diagnostic messages should be logged to a file in /tmp on each of the remote nodes

of your partition. The log file is named mplog.jobid.n where jobid is a unique job

identifier. The jobid will be the same for all remote nodes. Should you require help

from the IBM Support Center in resolving a PE-related problem, you will probably

be asked to generate these diagnostic logs.

The ability to generate diagnostic logs on each node is particularly useful for

isolating the cause of abnormal termination, especially when the connection

between the remote node and the home node Partition Manager has been broken.

42 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

As with most POE environment variables, you can temporarily override the value

of MP_PMDLOG using its associated command-line flag -pmdlog. For example, to

generate a pmd log file, you could:

 Set the MP_PMDLOG environment variable: Use the -pmdlog flag when invoking the program:

ENTER

export MP_PMDLOG=yes

ENTER

poe program -pmdlog yes

Note: By default, MP_PMDLOG is set to no. No diagnostic logs are generated.

You should not run MP_PMDLOG routinely, because this will greatly

impact performance and fill up your file system space.

Determining which nodes will participate in parallel I/O

MPI has a number of subroutines that enable your application program to perform

efficient parallel input-output operations. These subroutines (collectively referred to

as ″MPI-IO″) allow efficient file I/O on a data structure which is distributed across

several tasks for computation, but organized in a unified way in a single

underlying file. MPI-IO presupposes a single parallel file system underlying all the

tasks in the parallel job; PE’s implementation of it is intended for use with the IBM

Generalized Parallel File System (GPFS).

If your application program uses MPI-IO subroutines, all tasks in your MPI job

will, by default, participate in parallel I/O. You can, however, specify that only

tasks on a subset of the nodes in your job should handle parallel I/O. You might

want to do this to ensure that all I/O operations are performed on the same node.

To specify the nodes that should participate in parallel I/O, you:

v create an I/O node file (a text file that lists the nodes that should handle parallel

I/O) and

v set the MP_IONODEFILE environment variable to the name of the I/O node

file. As with most POE environment variables, MP_IONODEFILE has an

associated command-line flag -ionodefile.

For example, say your job will be run with the following host list file dictating the

nodes on which your program should run.

host1_name

host2_name

host3_name

host4_name

host5_name

host6_name

Say, however, that you want parallel I/O handled by only two of these nodes —

host5_name and host6_name. To specify this, you would create an I/O node file that

lists just the two host names.

host5_name

host6_name

One situation in which MP_IONODEFILE becomes useful is when running on a

cluster of workstations which will not have a true parallel file system across

multiple machines. By selecting one workstation to do the actual IO, you can

reliably use JFS, NFS, and AFS® files with MPI-IO across multiple machines. (The

file systems currently used, like NFS and AFS, to make a set of files available to

multiple workstations are not parallel file systems in the way that GPFS is.) With

respect to MPI-IO, an SP without GPFS is similar to a workstation cluster.

Chapter 2. Executing parallel programs 43

There should be no comments or blank lines in the I/O node file, there should be

only one node name per line. Node names may be in any form recognizable to

name service on the machine. Names which are not recognizable or which appear

more that once yield advisory messages. Names which are valid but which do not

represent nodes in the job are ignored. If MP_IONODEFILE is used and no node

listed in the file is involved in the job, the job will abort. MP_IONODEFILE is

most useful when used in conjunction with a host list file.

To indicate that the Partition Manager should use a particular I/O node file to

determine which nodes handle parallel I/O, you must set the MP_IONODEFILE

environment variable (or use the -ionodefile command-line flag to specify) the

name of the file. You can specify the file using its relative or full path name. For

example, say you have created an I/O node file ionodes in the directory /u/dlecker.

You could:

 Set the MP_IONODEFILE environment variable: Use the -ionodefile flag when invoking the program:

ENTER

export MP_IONODEFILE=/u/dlecker/ionodes

ENTER

poe program -ionodefile /u/dlecker/ionodes

Checkpointing and restarting programs

POE in Parallel Environment Version 4.2 provides enhanced capabilities to

checkpoint and later restart the entire set of programs that make up a parallel

application, including the checkpoint and restart of POE itself. A number of

previous restrictions for checkpointing have been removed as well.

Checkpointing is a method of periodically saving the state of job so that, if for

some reason the job does not complete, it can be restarted from the saved state. At

checkpoint time, checkpoint files are created on the executing machines. The

checkpoint file of POE contains all information required to restart the job from the

checkpoint files of the parallel applications.

Earlier versions of Parallel Environment’s checkpoint/restart capability were based

on user level checkpointing, with significant limitations. You can now checkpoint

both batch and interactive jobs using LoadLeveler or PE in a system-initiated mode

(external to the task) or in a user-initiated mode (internal to the task).

With system-initiated checkpointing, you can use the PE poeckpt command to

checkpoint a non-LoadLeveler POE job. LoadLeveler also provides commands for

checkpointing jobs being run under LoadLeveler (for more information, see Using

and Administering LoadLeveler). The PE poerestart command can be used to restart

any interactive checkpointed jobs.

With user-initiated checkpointing, your application can use the POE checkpointing

function call mpc_init_ckpt. In either mode, mpc_set_ckpt_callbacks and

mpc_unset_ckpt_callbacks calls can be made from within your parallel program.

The IBM Parallel Environment for AIX: MPI Programming Guide contains the specific

information on these functions.

Using the settings of the MP_CKPTDIR and MP_CKPTFILE POE environment

variables, the checkpoint data files are saved during the checkpointing phase, and

the job is restarted by reading data from the checkpoint files during the restart

phase. The MP_CHECKDIR and MP_CHECKFILE environment variables from

previous releases are no longer used by POE.

44 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|

When a checkpoint is taken, a set of checkpoint files is generated which consists of

a POE checkpoint file and checkpoint files from each task of the parallel

application. Each parallel task is checkpointed separately, and any processes

created by a parallel task make up a checkpoint/restart group. The task checkpoint

file contains information for all processes in the checkpoint/restart group. The

checkpoint directory name is derived from the MP_CKPTFILE value (if it contains

a full path name), the MP_CKPTDIR value, or the initial working directory. Tasks

that change directories internally will not impact the place where the checkpoint

file is written.

Note: When running a parallel program under LoadLeveler, the MP_CKPTDIR

and MP_CKPTFILE environment variables are set by LoadLeveler. If the

value for the checkpoint file name or directory is specified in the job

command file, those values will override the current settings.

When the checkpointing files are created, tags are added to the names to

differentiate between earlier versions of the files.

There are certain limitations associated with checkpointing an application. For

example, the CHECKPOINT environment variable must be set to yes when POE is

invoked for it and any of the parallel tasks to be checkpointable. Refer to IBM

Parallel Environment for AIX: MPI Programming Guide for specific details.

Checkpointing file management

The ability to checkpoint or restart programs is controlled by the definition and

availability of the checkpoint files, as specified by the MP_CKPTFILE environment

variable.

The checkpoint files may be defined on the local file system (JFS) of the node on

which the instance of the program is running, or they may be defined in some

shared file system (such as NFS, AFS, DFS™, GPFS, etc.). When the files are in a

local file system, then in order to perform process migration, the checkpoint files

will have to be moved to the new system on which the process is to be restarted. If

the old system crashed and is unavailable, it may not be possible to restart the

program. It may be necessary, therefore, to use some kind of file management to

avoid such a problem. If migration is not desired, it is sufficient to place

checkpoint files in the local JFS file system.

The program checkpoint files can be large, and numerous. There is the potential

need for significant amounts of available disk space to maintain the files. If

possible, you should avoid using NFS, AFS, or DFS to manage checkpoint files.

The nature of these systems is such that it takes a very long time to write and read

large files. Instead, use GPFS or JFS.

If a local JFS file system is used, the checkpoint file must be written to each remote

task’s local file system during checkpointing. Consequently, during a restart, each

remote task’s local file system must be able to access the checkpoint file from the

previously checkpointed program from the directory where the checkpoint file was

written when the checkpoint occurred. This is of special concern when opting to

restart a program on a different set of nodes from which it was checkpointed. The

local checkpoint file may need to be relocated to any new nodes. For these reasons,

it is suggested that GPFS be the file system best suited for checkpoint and restart

file management.

Chapter 2. Executing parallel programs 45

Managing task affinity on large SMP nodes

Large SMP nodes are organized around components called Multi-chip Modules,

MCM’s. An MCM contains several processors, I/O buses, and memory. While a

processor in an MCM can access the I/O bus and memory in another MCM,

demanding applications may see improved performance if the processor, the

memory it uses, and the I/O adapter it connects to, are all in the same MCM.

AIX provides the environment variable MEMORY_AFFINITY=MCM, which, if set,

will preferentially obtain memory from the local MCM. This setting is independent

of MP_TASK_AFFINITY. Parallel Environment provides the environment variable

MP_TASK_AFFINITY={MCM | SNI | mcm-list} to control the placement of tasks

of a parallel job so that the task will not be migrated between MCM’s during its

execution.

When MP_TASK_AFFINITY=MCM, the tasks are allocated in a round-robin

fashion among the MCM’s attached to the job by WLM. By default, the tasks are

allocated to all the MCMs in the node.

When MP_TASK_AFFINITY=SNI, the tasks are allocated to the MCM in common

with the first adapter window assigned to the task by LoadLeveler. This applies

only to MPI jobs.

When MP_TASK_AFFINITY=mcm-list, tasks will be assigned on a round-robin

basis to this set, within the constraint of an inherited rset, if any. ’mcm-list’

specifies a set of system level (LPAR) logical MCMs that can be attached to. Any

MCMs outside the constraint set will be attempted, but will fail. If a single MCM

number is specified in place of a list of MCMs, all tasks are assigned to that MCM.

When a value of -1 is specified, no affinity request will be made (effectively this

disables task affinity).

Running POE from a shell script

Due to an AIX limitation, if the program being run by POE is a shell script AND

there are more than 5 tasks being run per node, then the script must be run under

ksh93 by using:

#!/bin/ksh93

on the first line of the script.

POE user authorization

PE Version 4 uses an enhanced set of security methods based on Cluster Security

Services in RSCT. POE now has a security configuration option for the system

administrator to determine which set of security methods are to be used in the

system. There are two types of security methods supported:

v cluster based security

v AIX or DCE based security (or Compatibility), based on the PSSP Security

Services (which is the default).

For more information see the IBM Parallel Environment for AIX: Installation.

Cluster based security

When Cluster Based Security is the security method of choice, the system

administrator will have to ensure that UNIX Host Based authentication is enabled

46 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

and properly configured on all nodes. Refer to the IBM Parallel Environment for

AIX: Installation and the IBM RSCT for AIX 5L: Technical Reference for what this

entails.

From a user’s point of view, when Cluster Based Security is used, users will be

required to have the proper entries in the /etc/hosts.equiv or .rhosts files, in order

to ensure proper access to each node, as described in the section on “Using AIX

user authorization” on page 48.

AIX/DCE based security (compatibility)

When AIX/DCE (compatibility) based security is the security method of choice

(which is also the default), POE will rely on the following for user authorization,

based on the PSSP Security Services methods. The system administrator sets the

user authorization method with the PSSP chauthts command.

POE supports the following user authentication methods, based on the SP Security

services methods, set with the PSSP chauthts command:

compatibility

AIX authentication will be used, based on entries in the /etc/hosts.equiv or

.rhosts files. This is the default mechanism.

dce DCE authentication will be used, for which you need to have:

v a valid DCE id and principal, with which you perform a dce_login.

v the system administrator must have set up the PMD service principal.

dce and compatibility

where DCE authentication is attempted first, and, if that is unsuccessful,

AIX authentication is tried.

none no security methods are enabled. POE defaults to use AIX authentication,

as it does with compatibility.

Notes:

1. If you are using LoadLeveler to submit POE jobs, which includes all user space

applications, be aware that LoadLeveler is responsible for the security

authentication. The security function in POE is not invoked when POE is run

under LoadLeveler.

2. When POE is used on an SP, the lsauthts command can be used to check the

authentication method in use. For more information on the chauthts and

lsauthts commands, see the IBM Parallel System Support Programs for AIX:

Command and Technical Reference, Volume 1.

3. When POE is used on an SP, DCE credential forwarding is not supported by

PE.

Using DCE user authorization

When DCE authentication is enabled as the SP Security method of choice, POE will

expect a valid set of DCE credentials in order to submit parallel jobs.

When both DCE and ″compatibility″ methods are enabled, POE will first try DCE

authentication. If DCE authentication is unsuccessful, POE will then use AIX

authentication. In this case, any DCE authentication errors are written to the node’s

partition manager daemon log (if you have set the MP_PMDLOG environment

variable or its associated command line flag —pmdlog to yes). In order to use DCE

with POE, the following is required:

1. A valid set of DCE credentials created by a dce_login to a valid principal.

Chapter 2. Executing parallel programs 47

|
|

2. A valid set of Kerberos Version 5 principals, created by klogin or an entry in a

.k5login file in the user’s home directory. If the system is configured to use DCE

(Kerberos 5) authentication, you are required to have a klogin file set up in

your home directory on each of the processor nodes. Unless your DCE

authentication server grants unauthenticated access, you should, before

invoking your executable, first login to DCE from the home node using the

dce_login command. For more information on the .k5login file format, refer to

the IBM AIX 5L Version 5 System User’s Guide: Communications and Networks.

3. The system administrator must have properly set up PMD services principal as

part of SP Security administration and configuration steps. For more

information on configuring the PMD service principal, refer to IBM Parallel

Environment for AIX: MPI Subroutine Reference.

Using AIX user authorization

When compatibility authentication is enabled as the SP Security method of choice,

POE will require users to have remote execution authority in the system. Users

will need to be authorized to system nodes via either /etc/hosts.equiv or .rhosts

entries, as described in IBM Parallel Environment for AIX: Installation.

If the system is configured to use AIX-based authentication, you are required to

have an .rhosts file set up in your home directory on each of the remote processor

nodes. Alternatively, your user id on the home node can be authorized in the

/etc/host.equiv file on each remote node. For information on the TCP/IP .rhosts file

format, see IBM General Concepts and Procedures for RS/6000 and IBM AIX 5L Version

5 Files Reference.

AIX user authorization is the default, and is the only security mechanism available

when POE is used in a standalone RISC/6000 workstation environment in an SP

system running PSSP without the ssp.clients fileset installed.

Using POE with MALLOCDEBUG

Submitting a POE job that uses MALLOCDEBUG with an align:n option of other

than 8 may result in undefined behavior. To allow a POE parallel program to run

with an align:n option other than 8, you will need to create a script file. For

example, say the POE program is named myprog. You could create the following

script file:

MALLOCTYPE=debug

MALLOCDEBUG=align:0

myprog myprog_options

Once you had created the script file, you could then run the script file using the

poe command. For example, if the script file were named myprog.sh you would

enter:

poe myprog.sh <poe_options> <myprog_options>

Instead of:

poe myprog <poe_options> <myprog_options>

Using POE with AIX large pages

Memory requests in applications that use large pages in mandatory mode may fail

unless there are a minimum of 16 large pages (16M each) available for each

parallel task that makes a memory request. If any task requests >256M, an

additional 16 large pages must be available for each task, for each additional 256M

48 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

requested. In addition, unless the following workaround is used, an additional 16

large pages must be available for the POE process as well.

To avoid having the POE process use mandatory large pages, do not set the

LDR_CNTRL environment variable to LARGE_PAGE_DATA=M before invoking

POE. The value of this environment variable, (M in this case) is case sensitive.

Instead, use POE to invoke a script that first exports the environment variable, and

then invokes the parallel program.

Chapter 2. Executing parallel programs 49

|
|
|
|
|

50 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Chapter 3. Managing POE jobs

This chapter describes the tasks involved with managing POE jobs. It includes the

following:

v Scenarios for allocating nodes with LoadLeveler

v Scenarios for submitting a batch job using LoadLeveler

v Appropriate environment variable information to use when running your

applications.

Multi-task corefile

With the MP_COREDIR environment variable, you can create a separate directory

to save a corefile for each task. The corresponding command line option is

-coredir. Creating this type of directory is useful when you are running a parallel

job on one node, and the job dumps a corefile. By checking the directory, you can

see which task dumped the file. When setting MP_COREDIR, you specify the first

attribute of the directory name. The second attribute is the task id. If you do not

specify a directory, the default is coredir. The subdirectory containing each task’s

corefile is named coredir.taskid.

You can also disable the creation of a new subdirectory to save a corefile, by

specifying -coredir or MP_COREDIR with a value of none. When disabled,

corefiles will be written to /tmp instead of your current directory.

Disabling the creation of a new subdirectory may be necessary in situations where

programs are abnormally terminating due to memory allocation failures, (for

example, a malloc() call is the result of the original corefile). In these cases, setting

-coredir or MP_COREDIR to none may prevent a situation where POE could hang

as a result of a memory allocation problem while it is attempting to create a new

subdirectory to hold the corefile.

The following examples show what happens when you set the environment

variable:

Example 1:

MP_COREDIR=my_parallel_cores

MP_PROCS=2

run generates corefiles

Corefiles will be located at:

/current directory/my_parallel_cores.0/core

/current directory/my_parallel_cores.1/core

© Copyright IBM Corp. 1993, 2005 51

Example 2:

MP_COREDIR not specified

MP_PROCS=2

run generates corefiles

Corefiles will be located at:

/current directory/coredir.0/core

/current directory/coredir.1/core

Example 3:

MP_COREDIR=none

MP_PROCS=2

run generates corefiles

Corefiles will be located at:

/tmp/core

Note: If multiple tasks run on a node, and each generates a corefile, only the last

corefile written will be retrieved. The others are overwritten.

Using MP_BUFFER_MEM

MP_BUFFER_MEM specifies the size of the Early Arrival (EA) buffer that is used

by the communication subsystem to buffer eagerly sent messages that arrive before

there is a matching receive posted. This value can also be specified with the

-buffer_mem command line flag. The command line flag overrides a value set

with the environment variable.

The total amount of Early Arrival buffer space allocated by a task is controlled by

MP_BUFFER_MEM. If a single value is given, it is important for good

performance that the amount of memory specified by MP_BUFFER_MEM be

sufficient to hold a reasonable number of unmatched messages of size up to the

eager_limit from every possible sender. If necessary, PE may reduce the

52 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|

eager_limit to achieve this. The memory is pre-allocated and preformatted for

efficiency. Default values are usually sufficient for jobs up to 512 tasks.

If two values (M1,M2) are given for MP_BUFFER_MEM, the first value specifies

the amount of preformatted memory (and presumably is an estimate of the actual

memory requirement for Early Arrival messages); the second value is used as the

maximum requirement for Early Arrival buffering. PE ensures that this memory

requirement is not exceeded under any circumstances by limiting the number of

outstanding eager_limit messages from any sender.

This environment variable has two forms, as follows:

MP_BUFFER_MEM=pre_allocated_size

MP_BUFFER_MEM=pre_allocated_size,maximum_size

The first form is compatible with prior releases and is still suitable for most

applications. The second provides flexibility that may be useful for some

applications, in particular at large task counts.

Examples:

export MP_BUFFER_MEM=32M

export MP_BUFFER_MEM=32M,128M

export MP_BUFFER_MEM=0,128M

export MP_BUFFER_MEM=,128M

The pre_allocated_size argument is used to specify the size of the buffer to be

pre-allocated and reserved for use by the MPI library. This space is allocated

during initialization. If you omit this argument, or if you do not specify the

MP_BUFFER_MEM variable at all, the MPI library assigns a default value of 64

MB for US applications or 2.8 MB for IP applications. The maximum allowable

value is 256 MB. For the pre_allocated_size argument, you may specify a positive

number or zero, or provide the comma but omit the value. If the positive number

is greater than the minimum size that is needed by MPI for correct operation and

no greater than 256MB, a buffer of this size will be pre-allocated. An omitted value

tells the Parallel Environment implementation of MPI to use the default

pre-allocated EA buffer size. A zero tells the Parallel Environment implementation

of MPI to use the minimum workable EA pre-allocation. You must specify the

value in bytes, and you may use K (kilobytes), M (megabytes), or G (gigabytes) as

part of the specification.

The maximum_size argument is used to specify the maximum size to which the

EA buffer can temporarily grow when the pre-allocated portion of the early arrival

buffer has been filled. This extra space is borrowed from the heap as needed and,

therefore, can be considered to be shared by the MPI library and the application.

You may specify a positive number or omit the comma and specification. You must

specify the value in bytes, and you may use K (kilobytes), M (megabytes), or G

(gigabytes) as part of the specification. Note also that for 64-bit applications, the

maximum buffer size may exceed 4 gigabytes.

Important: You can use the -buffer_mem command line flag to specify the

pre_allocated_size and maximum_size values or pre_allocated_size alone.

However, note that the two values you specify must be separated by a comma,

and blanks are not allowed unless you surround the values with quotes. The

following examples show correct use of the -buffer_mem flag:

Chapter 3. Managing POE jobs 53

|
|

|
|
|
|
|
|

|

|
|

poe -buffer_mem 32M

poe -buffer_mem 32M,64M

poe -buffer_mem ’32M, 64M’

poe -buffer_mem ,64M

To pre-allocate the entire EA buffer, specify MP_BUFFER_MEM and provide a

single value. The value you provide will be assigned to both the

pre_allocated_size and maximum_size arguments. The maximum allowable value

is 256 MB.

The default values for MP_BUFFER_MEM are 64 MB for US applications and 2.8

MB for IP applications.

If you will be checkpointing a program, be aware that the amount of space needed

for the checkpoint files will include the entire pre-allocated buffer, even if only

parts of it are in use. The extent to which the heap has been allocated also affects

the size of the checkpoint files.

Important: Setting the MP_BUFFER_MEM maximum to a value greater than the

pre-allocated size implies that you are either able to commit enough heap memory

to early arrivals to cover the difference, or that you are confident that the

maximum demand will not occur and you have sufficient memory for the actual

peak. If the malloc() fails due to unexpected peaks in EA buffer demand and

insufficient memory in the system, the job is terminated.

Note that the MPI library adds 64K to all of the values you specify, which it uses

for internal management of the Early Arrival buffer.

Specifying the format of corefiles or suppressing corefile generation

Using the MP_COREFILE_FORMAT environment variable (or its associated

command-line flag -corefile_format), you can determine the format of corefiles

generated when processes terminate abnormally — you can specify either

traditional AIX corefiles or lightweight corefiles that conform to the Parallel Tool

Consortium’s Standardized Lightweight Corefile Format (LCF).

 If the MP_COREFILE_FORMAT

environment variable or

-corefile_format flag:

Then: For more information, see:

is not set/used standard AIX corefiles will be

generated when processes terminate

abnormally.

“Generating standard AIX corefiles”

on page 55

specifies the string ″STDERR″ the corefile information will be

output to standard error when

processes terminate abnormally.

“Writing corefile information to

standard error” on page 55

specifies any other string lightweight corefiles will be

generated when processes terminate

abnormally.

“Generating lightweight corefiles” on

page 55

Note: Although the AIX operating system provides its own lightweight corefile

subroutine and environment variable (LIGHTWEIGHT_CORE), be aware

that it is intended for serial programs only. When using the AIX

54 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|

|
|

LIGHTWEIGHT_CORE environment variable with parallel programs

compiled with the POE compiler scripts, the resulting output is

unpredictable. For this reason, you should use the POE lightweight corefile

flags and environment variables for parallel programs.

Generating standard AIX corefiles

By default, POE processes that terminate abnormally generate standard AIX

corefiles. Since this is the default behavior, you will not typically need to explicitly

specify that standard AIX corefiles should be generated. If, however, the

MP_COREFILE_FORMAT environment variable has previously been set, you will

need to unset it in order to once again get the default behavior. To unset the

MP_COREFILE_FORMAT environment variable, you would

ENTER

unset MP_COREFILE_FORMAT

Generating corefiles for sigterm

POE will automatically generate corefiles for those signals that result in corefiles,

with the exception of SIGTERM. This is because the SIGTERM signal can also be

issued as the result of an explicit request to terminate via an MPI_Abort() call, in

which case, it may not be beneficial to have a corefile created.

POE provides an option, via the MP_COREFILE_SIGTERM environment variable

(and the corresponding -corefile_sigterm command line flag), to allow the creation

of a corefile for SIGTERM, when MP_COREFILE_SIGTERM or -corefile_sigterm

is set to yes. The default is no.

Writing corefile information to standard error

As described in “Generating standard AIX corefiles,” POE processes that terminate

abnormally will, by default, generate standard AIX corefiles. If you prefer, you can

instruct POE to write the stack trace or lightweight corefile information to standard

error instead. To do this, set the MP_COREFILE_FORMAT environment variable

to the string STDERR (in uppercase). As with most POE environment variables,

you can temporarily override the value of MP_COREFILE_FORMAT using its

associated command-line flag — corefile_format. For example, to specify that

lightweight corefile information should be written to standard error, you could:

 Set the MP_COREFILE_FORMAT environment

variable:

Use the -corefile_format flag when invoking the

program:

ENTER

export MP_COREFILE_FORMAT=STDERR

ENTER

poe program -corefile_format STDERR

Generating lightweight corefiles

By default, POE processes that terminate abnormally generate standard AIX

corefiles. Often, however, traditional AIX corefiles are insufficient for debugging

your program. This is because traditional AIX corefiles provide information that is

too low-level for you to get a general picture of the overall status of your program.

In addition, traditional AIX corefiles tend to be large and so can consume too

much, if not all, available disk space. In being written out, theses corefiles can take

up an unacceptable amount of CPU time and network bandwidth. These problems

are especially acute in a large-scale parallel-processing environment (such as the SP

running PE), when the problems can be multiplied by hundreds or thousands of

processes.

Chapter 3. Managing POE jobs 55

|
|
|
|

|
|
|
|

To address these problems with traditional corefiles, the Parallel Tools Consortium

(a collaborative body of parallel-programming researchers, developers, and users

from governmental, industrial, and academic sectors) has developed a corefile

format called the Standardized Lightweight Corefile Format (LCF). As its name

implies, a lightweight corefile does not have the often unnecessary low-level detail

found in a traditional corefile; instead a lightweight corefile contains thread stack

traces (listings of function calls that led to the error). Because of its smaller size, a

lightweight corefile can be generated without consuming as much disk space, CPU

time, and network bandwidth as a traditional AIX corefile. In addition, the LCF

format can be a more useful aid in debugging threaded programs.

Using the MP_COREFILE_FORMAT environment variable (or its associated

command-line flag -corefile_format), you can specify that POE should generate

lightweight corefiles instead of standard AIX corefiles. To do this, simply specify

the lightweight corefile name. For example, to specify the lightweight corefile name

light_core, you could:

 Set the MP_COREFILE_FORMAT environment

variable:

Use the -corefile_format flag when invoking the

program:

ENTER

export MP_COREFILE_FORMAT=light_core

ENTER

poe program -corefile_format light_core

One lightweight corefile (in this example, named light_core) for each process will be

saved in a separate subdirectory.

By default, these subdirectories will be prefixed by the string coredir and suffixed

by the task id (as in coredir.0, coredir.1, and so on). You can specify a prefix other

than the default coredir by setting the MP_COREDIR environment variable or

-coredir flag as described in “Multi-task corefile” on page 51.

Note: By setting -coredir or MP_COREDIR to none you can bypass saving

lightweight corefiles in a new subdirectory, and have them saved in /tmp

instead.

In addition to developing the LCF standard, the Parallel Tools Consortium has also

created command-line and graphical user interface tools (not distributed by IBM)

that you can use to analyze lightweight corefiles. To use these tools, you will first

want to merge the separate lightweight corefiles into a single file — with each

separate lightweight corefile’s information appended, one after another, into the

single lightweight corefile. To merge the separate lightweight corefiles into a single

file, you could, for example, use the mcpgath command (as described in

“mcpgath” on page 84) or you could create and use your own script.

Note: The lightweight corefile stack traces, and, by extension, the lightweight

corefile browsers, will be able to show source code line numbers only if

your program is compiled with the -g option. Otherwise, locations will be

shown by relative address within the module. The -g flag is a standard

compiler flag that produces an object file with symbol table references. For

more information on the -g option, refer to its use on the cc command as

described in IBM AIX 5L Version 5: Commands Reference

For more information on the Standard Lightweight Corefile Format or the

Lightweight Corefile Browser (LCB) project, refer to http://www.ptools.org/projects/lcb

on the World Wide Web. For information about the Parallel Tools Consortium, refer

to http://www.ptools.org on the World Wide Web.

56 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Stopping a POE job

You can stop (suspend) an interactive POE job by pressing <Ctrl-z> or by sending

POE a SIGTSTP signal. POE stops, and sends a SIGSTOP signal to all the remote

tasks, which stops them. To resume the parallel job, issue the fg or bg command to

POE. A SIGCONT signal will be sent to all the remote tasks to resume them.

Cancelling and killing a POE job

You can cancel a POE job by pressing <Ctrl-c> or <Ctrl-\>. This sends POE a

SIGINT or SIGQUIT signal respectively. POE terminates all the remote tasks and

exits.

If POE on the home node is killed or terminated before the remote nodes are shut

down, direct communication with the parallel job will be lost. In this situation, use

the poekill script as a POE command, or individually via rsh, to terminate the

partition. poekill kills all instantiations of the program name on a remote node by

sending it a SIGTERM signal. See the poekill script in /usr/lpp/ppe.poe/bin, and the

description of the poekill command in Appendix A, “Parallel environment

commands,” on page 81.

Note: Do not kill the pmds using the poekill command. Doing so will prevent

your remote processes from completing normally.

Detecting remote node failures

POE and the Partition Manager use a pulse detection mechanism to periodically

check each remote node to ensure that it is actively communicating with the home

node. You specify the time interval (or pulse interval), of these checks with the

-pulse flag or the MP_PULSE environment variable. During an execution of a POE

job, POE and the Partition Manager daemons check at the interval you specify that

each node is running. When a node failure is detected, POE terminates the job on

all remaining nodes and issues an error message.

The default pulse interval is 600 seconds (10 minutes). You can increase or decrease

this value with the -pulse flag or the MP_PULSE environment variable. To

completely disable the pulse function, specify an interval value of 0 (zero). For the

PE debugging facility MP_PULSE is disabled.

Considerations for using the high performance switch interconnect

The high performance switch supports dedicated User Space (US) and IP sessions,

running concurrently on a single node. Users of IP communication programs that

are not using LoadLeveler may treat these adapters like any other IP-supporting

adapter

While US message passing programs must use LoadLeveler to allocate nodes, IP

message passing programs may use LoadLeveler, but are not required to. When

using LoadLeveler, nodes may be requested by name or number from one system

pool only. When specifying node pools, the following rules apply:

v All the nodes in a pool should support the same combination of IP and US

protocols. In other words, all the nodes should be able to run:

– the IP protocol

or

– the US protocol

Chapter 3. Managing POE jobs 57

or

– the IP and US protocols concurrently.
v In order to run the IP protocol, the IP switch addresses must be configured and

started. In order to run the US protocol on the SP, the switch node numbers

must be configured. For more information regarding these protocols and

LoadLeveler, see Using and Administering LoadLeveler for more information.

v By default, pool requests for the US message passing protocol also request

exclusive use of the node(s). As long as a node was allocated through a pool

request (and not through a specific node request), LoadLeveler will not allocate

concurrent IP message passing programs on the node. You can override this

default so that the node can be used for both IP and US programs by specifying

“multiple” CPU usage.

v By default, requests for the IP message passing protocol also request multiple

use of the node; LoadLeveler can allocate both IP and US message passing

programs on this node. You can override this default so that the node is

designated for exclusive use by specifying “unique” CPU usage.

v When running a batch parallel program under LoadLeveler, the adapter and

CPU are allocated as specified by the network keyword in the LoadLeveler Job

Command File, which can also include the specifications for multiple adapters

and striping. See Using and Administering LoadLeveler for more information.

Scenarios for allocating nodes with LoadLeveler

This section provides some examples of how someone would allocate nodes using

LoadLeveler.

Scenario 1: Explicit allocation

A POE user, Paul, wishes to run a US job 1 in nodes A, B, C, and D. He doesn’t

mind sharing the node with other jobs, as long as they are not also running in US.

To do this, he specifies MP_EUIDEVICE=css0, MP_EUILIB=us, MP_PROCS=4,

MP_CPU_USE=multiple, and MP_ADAPTER_USE=dedicated. In his host file, he

also specifies:

node_A

node_B

node_C

node_D

The POE Partition Manager (PM) sees that this is a US job, and asks LoadLeveler

for dedicated use of the css0 adapter on nodes A, B, C, and D and shared use of

the CPU on those nodes. LoadLeveler then allocates the nodes to the job, recording

that the css0/US session on A, B, C, and D has been reserved for dedicated use by

this job, but that the node may also be shared by other users.

While job 1 is running, another POE user, Dan, wants to run another US job, job 2,

on nodes B and C, and is willing to share the nodes with other users. He specifies

MP_EUIDEVICE=css0, MP_EUILIB=us, and MP_PROCS=2,

MP_CPU_USE=multiple, and MP_ADAPTER_USE=dedicated. In his host file, he

also specifies:

node_B

node_C

The PM, as before, asks LoadLeveler for dedicated use of the css0/US adapter on

nodes B and C. LoadLeveler determines that this adapter has already been

58 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|

reserved for dedicated use on nodes B and C, and does not allocate the nodes

again to job 2. The allocation fails, and POE job 2 cannot run.

While job 1 is running, a second POE user, John, wishes to run IP/switch job 3 on

nodes A, B, C, and D, but doesn’t mind sharing the node and the high

performance switch with other users. He specifies MP_EUIDEVICE=css0,

MP_EUILIB=ip, MP_PROCS=4, MP_CPU_USE=multiple, and

MP_ADAPTER_USE=shared. In his host file, he also specifies;

node_A

node_B

node_C

node_D

The POE PM asks LoadLeveler, as requested by John, for shared use of the css0/ip

adapter and CPU on nodes A, B, C, and D. LoadLeveler determines that job 1

permitted other jobs to run on those nodes as long as they did not use the css0/US

session on them. The allocation succeeds, and POE IP/switch job 3 runs

concurrently with POE US job 1 on A, B, C, and D.

The scenario above, illustrates a situation in which users do not mind sharing

nodes with other users’ jobs. If a user wants his POE job to have dedicated access

to nodes or the css0 adapter on nodes, he would indicate that in the environment

by setting MP_CPU_USE=unique instead of multiple. If job 1 had done that, then

job 3 would not have been allocated to those nodes and, therefore, would not have

been able to run.

Scenario 2: Implicit allocation

In this scenario, all nodes have both css0/US and css0/IP sessions configured, and

are assigned to pool 2.

In this example, we have eight nodes; A, B, C, D, E, F, G, H.

Job 1: Job1 is interactive, and requests 4 nodes for US using MP_RMPOOL.

MP_PROCS=4

MP_RMPOOL=2

MP_EUILIB=us

LoadLeveler allocates nodes A, B, C, and D for dedicated adapter (forced for US)

and dedicated CPU (default for MP_RMPOOL).

Job 2: Job 2 is interactive, and requests six nodes for US using host.list.

MP_PROCS=6

MP_HOSTFILE=./host.list

MP_EUILIB=us

MP_CPU_USE=multiple

MP_ADAPTER_USE=shared

host.list

 @2

Chapter 3. Managing POE jobs 59

|
|

POE forces the adapter request to be dedicated, even though the user specified

shared. Multiple (shared CPU) is supported, but in this case LoadLeveler doesn’t

have six nodes, either for CPU or for adapter, so the job fails.

Job 3: Job 3 is interactive and requests six nodes for IP using MP_RMPOOL.

MP_PROCS=6

MP_RMPOOL=2

MP_EUILIB=ip

The defaults are shared adapter and shared CPU, but LoadLeveler only has four

nodes available for CPU use, so the job fails.

Job 4: Job 4 is interactive and requests three nodes for IP using MP_RMPOOL.

MP_PROCS=3

MP_RMPOOL=2

MP_EUILIB=ip

The defaults are shared adapter and shared CPU. LoadLeveler allocates nodes E, F,

and G.

Job 5: Job 5 is interactive and requests two nodes for IP using MP_RMPOOL.

MP_PROCS=2

MP_RMPOOL=2

MP_EUILIB=ip

The defaults are shared adapter and shared CPU. LoadLeveler allocates two nodes

from the list E, F, G, H (the others are assigned as dedicated to job 1).

Scenario 3: Implicit allocation

In this scenario, all nodes have both css0/US and css0/IP sessions configured, and

are assigned to pool 2.

In this example, we have eight nodes; A, B, C, D, E, F, G, H

Job 1: Job 1 is interactive and requests four nodes for US using host.list.

MP_PROCS=4

MP_HOSTFILE=./host.list

MP_EUILIB=us

MP_CPU_USE=multiple

MP_ADAPTER_USE=dedicated

host.list

 @2

LoadLeveler allocates nodes A, B, C, and D for dedicated adapter (forced for US),

and shared CPU.

60 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Job 2: Job 2 is interactive and requests six nodes for US using host.list.

MP_PROCS=6

MP_HOSTFILE=./host.list

MP_EUILIB=us

MP_CPU_USE=multiple

MP_ADAPTER_USE=shared

host.list

 @2

POE forces the adapter request to be dedicated, even though the user has specified

shared. Multiple (shared CPU) is supported, but in this case, LoadLeveler doesn’t

have six nodes for the adapter request, so the job fails.

Job 3: Job 3 is interactive and requests six nodes for IP using MP_RMPOOL.

MP_PROCS=6

MP_HOSTFILE=NULL

MP_EUILIB=ip

MP_RMPOOL=2

The defaults are shared adapter and shared CPU. LoadLeveler allocates six nodes

for IP from the pool.

Job 4: Job 4 is interactive and requests three nodes for IP using MP_RMPOOL.

MP_PROCS=3

MP_HOSTFILE=NULL

MP_EUILIB=ip

MP_RMPOOL=2

The defaults are shared adapter and shared CPU. LoadLeveler allocates three

nodes from the pool.

Considerations for data striping, failover and recovery with PE

PE MPI depends on LAPI as a lower level protocol and the support for striping is

entirely within the LAPI layer. In most cases, the layering of PE MPI on LAPI is

transparent to the MPI user. Striping is the distribution of message data across

multiple communication adapters in order to increase bandwidth. By using

striping in conjunction with the bulk transfer transport mechanism, applications

can experience gains in communication bandwidth performance. Applications that

do not use the bulk transfer communication mode typically cannot benefit from

striping over multiple adapters.

LAPI also provides facilities for higher availability and recovery from link and

adapter failures. LAPI can quickly determine when an adapter no longer has the

ability to communicate, and as a result will fail over and recover all communication

on an alternate path.

Chapter 3. Managing POE jobs 61

|

|
|
|
|
|
|
|
|

|
|
|
|

In this case, though the striping implementation is within LAPI, it has implications

that affect PE MPI users. The following section is LAPI-oriented, but is included

here to provide information you may find valuable. If you are interested in more

specific details about striping or failover and recovery operations, refer to RSCT for

AIX 5L: LAPI Programming Guide.

Using failover and recovery

LAPI’s failover and recovery function consists of two elements:

1. Monitoring and receiving notification about the communication status of

pSeries HPS adapters. This element depends on the group services component

of RSCT and a component of LAPI called the Network Availability Matrix

(NAM).

2. The use of multiple pSeries HPS adapters for redundancy, to enable failover.

Failover and recovery cannot be provided for a job if either of these elements is

absent.

Monitoring adapter status

Adapter status monitoring depends on NAM and group services, as follows.

The Network Availability Matrix (NAM) is a pseudo-device component that is

packaged as part of LAPI. To make use of LAPI’s failover and recovery function,

the NAM pseudo-device must be Available on all of the nodes that are running

your job tasks. For more specific information on installing and setting up NAM,

refer to RSCT for AIX 5L: LAPI Programming Guide.

The RSCT group services component updates adapter status in the NAMs of the

nodes within a given peer domain. In order for LAPI failover and recovery to be

possible for a given job, job tasks must all run on nodes that belong to the same

peer domain. Preferably, all of the nodes in the system must be configured as part

of a single RSCT peer domain. For information about setting up an RSCT peer

domain, see RSCT for AIX 5L: Administration Guide.

Requesting the use of multiple adapters

You can use POE environment variables or LoadLeveler job control file (JCF)

keywords to request the use of multiple adapters.

Using POE environment variables: In order for there to be sufficient redundancy

to handle at least one adapter failure, each task of the job needs to be allocated

communication instances across at least two different pSeries HPS adapters. An

instance is an entity that is required for communication over an adapter device. In

the user space (US) communication mode, which is specified by setting

MP_EUILIB=us, an instance corresponds to an adapter window. On the other

hand, in the IP communication mode, which is specified by setting

MP_EUILIB=ip, an instance corresponds to the IP address of a given adapter to be

used for communication.

Depending on the number of networks in the system and the number of adapters

each node has on each of the networks, you can request the allocation of multiple

instances for your job tasks by using a combination of the POE environment

variables MP_EUIDEVICE and MP_INSTANCES. The distribution of these

requested instances among the various pSeries HPS adapters on the nodes is done

by LoadLeveler. Depending on whether the job is using user space or IP, and on

the resources available on each of the adapters, LoadLeveler will try to allocate

these instances on different adapters.

62 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|

|
|

|
|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

To request the use of multiple instances on a system where all nodes have adapters

on each of the n networks in the system, you can set MP_EUIDEVICE to the value

sn_all. This setting translates to a request for the default number of instances (1)

from adapters on each of the networks in the system, and a request for a total of n

instances for each of the job tasks. You do not have to set the MP_INSTANCES

environment variable. If MP_EUIDEVICE is set to sn_all and you do set the

MP_INSTANCES variable to a value m (where m is a number from 1 through the

value of the case-insensitive string max), this translates to a request of m instances

from each of the networks in the system for each job task. For user space, this

corresponds to a request for (m * n) different windows for each job task. For IP, this

corresponds to a request for the same number of pSeries HPS IP devices.

You must take the following considerations into account while defining the

number of instances to use and the value specified for MP_EUIDEVICE:

v If m is greater than the number of adapters a node has on one of the networks,

multiple windows will be allocated from some of the adapters. For IP, the same

adapter device will be allocated multiple times.

v LoadLeveler translates the value max as a request to allocate the number of

instances (as specified by the max_protocol_instances variable) that are defined for

this job class in the LoadLeveler LoadL_admin file. See IBM LoadLeveler for AIX

5L: Using and Administering for more information. If you request more instances

than the value of max_protocol_instances, LoadLeveler allocates a number of

instances that is equal to the value of max_protocol_instances. To have your job

use all adapters on the system across all the networks, you can have the

administrator set max_protocol_instances for your job class to the number of

adapters each node has on each network (assuming that each node has the same

number of adapters on each network), and then run your job with

MP_EUIDEVICE=sn_all and MP_INSTANCES=max.

v On a system where every node is connected to more than one common network,

setting MP_EUIDEVICE=sn_all is sufficient to allocate instances from distinct

adapters for all job tasks. You do not need to set MP_INSTANCES. This is

because an adapter is connected to exactly one network, this is a request for

instances from each network, and if the request is satisfied, at least two distinct

adapters have been allocated for each of the job tasks. In the case of user space,

if all windows on the adapters of one or more networks are all used up, the job

will not be scheduled until windows are available on adapters of each network.

To request the use of multiple instances on a system where all nodes are connected

to a single pSeries HPS network, or where nodes are connected to multiple

networks, but you want your tasks to use adapters that are connected to only one

of those networks, you can set MP_EUIDEVICE=sn_single and

MP_INSTANCES=m, where m is a number from 1 through the value of the

(case-insensitive) string max. This translates to a request for m instances on one

network only; not, as in the previous case, on each of the n networks in the

system. With such a request, if MP_EUILIB=us, it is not guaranteed that

LoadLeveler will allocate the multiple windows from distinct adapters if window

resources on some of the adapters are all used up by previously-scheduled jobs. In

this scenario, LoadLeveler may allocate the multiple windows all from a single

adapter and one or more of the job tasks will be without a redundant adapter to

fail over to in the case of a communication problem. Thus, the only guaranteed

way to get multiple adapters allocated to the job to satisfy the basic requirements

for LAPI’s failover and recovery function, is to have the nodes in the system

connect to multiple pSeries HPS networks and setting MP_EUIDEVICE=sn_all.

Chapter 3. Managing POE jobs 63

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

POE will post an attention message stating that failover and recovery operations

may not be possible for the job if multiple instances are requested, but one or more

job tasks are allocated instances that are all from the same adapter. The interaction

among the values of MP_INSTANCES, MP_EUIDEVICE, and MP_EUILIB, in

terms of the total instances that are allocated to every task of the job, and whether

use of the failover and recovery function is possible as a result are shown in

Table 11:

 Table 11. Failover and recovery operations

MP_EUIDEVICE=

Instances allocated per task with

MP_EUILIB=us

Instances allocated per task with

MP_EUILIB=ip

MP_INSTANCES is

not set

MP_INSTANCES=m MP_INSTANCES is

not set

MP_INSTANCES=m

sn_single 1

no failover

m

failover may not be

possible

1

no failover

m

failover is possible if

num_adapters per

network > 1

sn_all num_networks

failover is possible if

num_networks > 1

m * num_networks

failover is possible if

num_networks > 1

num_networks

failover is possible if

num_networks > 1

m * num_networks

failover is possible if

num_networks > 1

Using LoadLeveler JCF keywords: The use of the LoadLeveler job class attribute

max_protocol_instances is described in “Using POE environment variables” on page

62. For more information about this attribute, and for the syntax to specify the

request for multiple instances on a single network or on all networks in the system

using a LoadLeveler job control file (JCF), see IBM LoadLeveler for AIX 5L: Using

and Administering.

Failover and recovery restrictions

v Requesting the use of multiple instances for tasks of the job is for

failover/recovery and load balancing among multiple networks only. No

performance gain in terms of individual task bandwidth should be expected due

to the use of multiple instances.

v Although more than eight instances are allowed using a combination of

LoadLeveler’s max_protocol_instances setting and the MP_INSTANCES

environment variable, LAPI ignores all window allocations beyond the first

eight, because LAPI supports a maximum of eight adapters per operating

system instance and the best performance can be obtained with one window on

each of them. Using multiple windows on a given adapter provides no

performance advantage.

v When a job with a failed adapter is preempted, LoadLeveler may not be able to

continue with the job if it (LoadLeveler) cannot reload the switch table on the

failed adapter. Any adapter failure that causes switch tables to be unloaded will

not be recovered during the job run.

v In single-network scenarios, LoadLeveler attempts to allocate adapter windows

on separate adapters, but does not always succeed. Correspondingly, failover

and recovery are not always possible in single-network scenarios. The user will

get POE attention messages at job startup time when LoadLeveler fails to get

windows on at least two separate adapters.

v Failover and recovery are not supported for non-snX adapters or for standalone

(non-POE) LAPI.

64 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|
|
|

||

|

|
|
|
|

|
|
||
|
|

||

|

|

|
|

|

|

|

|
|
|

||

|
|

|

|
|

|

|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

Data striping

When running parallel jobs on processors with pSeries High Performance Switches,

it is possible to stripe data through multiple adapter windows. This is supported

for both IP and US protocols.

If the system has more than one switch network, the resource manager allocates

adapter windows from multiple adapters. A switch network is the circuit of

adapters that connect to the same pSeries HPS. One window is assigned to an

adapter, with one adapter each selected from a different switch network.

If the system has only one switch network, the adapter windows are most likely

allocated from different adapters, provided that there are sufficient windows

available on each adapter. If there are not enough windows available on one of the

adapters, the adapter windows may all be allocated from a single adapter.

LAPI manages communication among multiple adapter windows. Using resources

that LoadLeveler allocates, LAPI opens multiple user space windows for

communication. Every task of the job opens the same number of user space

windows, and a particular window on a task can only communicate with the

corresponding window on other tasks. These windows form a set of ″virtual

networks″, in which each ″virtual network″ consists of a window from each task

that can communicate with the corresponding windows from the other tasks. The

distribution of data among the various windows on a task is referred to as striping,

which has the potential to improve communication bandwidth performance for

LAPI clients.

To enable striping in user space mode, use environment variable settings that

result in the allocation of multiple instances. For a multi-network system, this can

be done by setting MP_EUIDEVICE to sn_all. On a single-network system with

multiple adapters per operating system image, this can be done by setting

MP_EUIDEVICE to sn_single and setting MP_INSTANCES to a value that is

greater than 1.

For example, on a node with two adapter links, in a configuration where each link

is part of a separate network, the result is a window on each of the two networks,

which are independent paths from one node to others. For IP communication and

for messages that use the user space FIFO mechanism (in which LAPI creates

packets and copies them to the user space FIFOs for transmission), striping

provides no performance improvement. Therefore, LAPI does not perform striping

for short messages, noncontiguous messages, and all communication in which bulk

transfer is disabled through environment variable settings.

For large contiguous messages that use bulk transfer, striping provides a vast

improvement in communication performance. Bandwidth scaling is nearly linear

with the number of adapters (up to a limit of 8) for sufficiently-large messages.

This improvement in communication bandwidth stems from: 1) the low overhead

needed to initiate the remote direct memory access (RDMA) operations used to

facilitate the bulk transfer, 2) the major proportion of RDMA work being done by

the adapters, and 3) high levels of concurrency in the RDMA operations for

various parts of the contiguous messages that are being transferred by RDMA by

each of the adapters.

To activate striping or failover for an interactive parallel job, you must set the

MP_EUIDEVICE and MP_INSTANCES environment variables as follows:

v For multiple networks:

Chapter 3. Managing POE jobs 65

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|

MP_EUIDEVICE=sn_all — Guarantees that the adapters assigned will be from

different networks.

v For a single network:

MP_EUIDEVICE=sn_single and MP_INSTANCES=n (where n is greater than 1

and less than max_protocol_instances) — Improved striping performance using

RDMA can only be seen if windows are allocated from multiple adapters on the

single network. Such an allocation may not be possible if there is only one

adapter on the network or if there are multiple adapters, but there are available

resources on only one of the adapters.

To activate striping for a parallel job submitted to the LoadLeveler batch system,

the network statement of the LoadLeveler command file must be coded

accordingly.

v Use this network statement for a LAPI US job that uses pSeries High

Performance Switches on multiple networks:

#@ network.lapi = sn_all,shared,us

v Use this network statement for an MPI and LAPI US job that uses pSeries High

Performance Switches on multiple networks and shares adapter windows:

#@ network.mpi_lapi = sn_all,shared,us

The value of MP_INSTANCES ranges from 1 to the maximum value specified by

max_protocol_instances, as defined in the LoadLeveler LoadL_admin file. The

default value of max_protocol_instances is 1. See IBM LoadLeveler for AIX 5L: Using

and Administering for more information.

Communication and memory considerations

Depending on the mode of communication, when multiple pSeries HPS adapters

are used for data striping or for failover and recovery, additional memory or

address space resources are used for data structures that are associated with each

communication instance. In 32-bit applications, these additional requirements have

implications that you must consider before deciding whether to use striping or

failover and recovery and the extent to which you will use these functions.

IP communication: When multiple pSeries HPS instances are used for IP

communication, LAPI allocates these data structures from the user heap. Some

32-bit applications may therefore need to be recompiled to use additional data

segments for their heap by using the -bmaxdata compilation flag and requesting a

larger number of segments. The default amount of data that can be allocated for

64-bit programs is practically unlimited, so no changes are needed. Alternatively,

you can modify the 32-bit executable using the ldedit command or by setting the

LDR_CNTRL environment variable to MAXDATA. Base the increase to -bmaxdata

on what is needed rather than setting it to the maximum allowed (0x80000000).

Using more segments than required may make certain shared memory features

unusable, which can result in poor performance. Also, applications that require the

eight allowed segments for their own user data (thus leaving no space for LAPI to

allocate structures) must use a single IP instance only

(MP_EUIDEVICE=sn_single).

For more information about ldedit, see IBM AIX 5L Version 5.2 Commands Reference

or IBM AIX 5L Version 5.3 Commands Reference. For more information about

LDR_CNTRL, see IBM AIX 5L Version 5.2 Performance Management Guide or IBM

AIX 5L Version 5.3 Performance Management Guide.

US communication: When multiple pSeries HPS instances are used for US

communication, you need to consider the following segment usage information

when deciding whether to use striping or failover and recovery. The

66 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|

|

|
|
|
|
|
|

|
|
|

|
|

|

|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

communication subsystem uses segment registers for several different purposes.

The AIX memory model for 32-bit applications uses five segment registers. In a

32-bit executable, there are only 16 segment registers available. In a 64-bit

executable, the number of segment registers is essentially unbounded. Because

segment registers are abundant in 64-bit job runs, this discussion is important only

for 32-bit job runs.

By default, the amount of memory that is available for application data structures

(the heap) in a 32-bit job run is somewhat less than 256MB. You can use the

compilation flag -bmaxdata:0x80000000 to allocate 2GB of heap, but this requires

eight segment registers. Smaller -bmaxdata values use fewer segment registers, but

these values limit the size of application data structures. If you try to use every

available feature of the communication subsystem and allow 2GB for heap, there

will not be enough registers, and your application will lose some performance or

perhaps not be able to start. The communication subsystem uses segments as

follows:

v One US instance (window): 2

v Each additional instance: 1

v Switch clock: 1

v Shared memory: 1

v Shared memory cross-memory attach: 1

Using MPI and LAPI together with separate windows consumes segments beyond

the minimum. Using striping also consumes extra windows. Access to the switch

clock for the MPI_WTIME_IS_GLOBAL attribute requires a segment register.

Turning on MP_SHARED_MEMORY requires one segment register for basic

functions and a second segment register to exploit cross-memory attach, to

accelerate large messages between tasks on the same node. If your application

requires a large heap, you may need to forgo some communication subsystem

options. For most applications, you can set MP_CLOCK_SOURCE=AIX and free

one register. If MPI and LAPI calls are used in the application, make sure

MP_MSG_API is set to MPI_LAPI rather than MPI,LAPI. Because shared memory

uses one pair of registers per protocol, using MPI_LAPI rather than MPI,LAPI is

especially important when combining shared memory and user space. If you do

not need to use the striping and failover functions, make sure that

MP_EUIDEVICE is set to sn_single and that MP_INSTANCES is not set (in

which case, it defaults to 1) or is set to 1 explicitly.

For 32-bit executables that are compiled to use small pages, the segment registers

that are reserved by AIX and by -bmaxdata are claimed first. The initialization of

user space comes second. If there are not enough registers left, your job will not

start. The initialization of shared memory comes last. If there are no registers left,

the job will still run, but without shared memory. If there is only one register left,

shared memory will be enabled, but the optimization to speed large messages with

cross-memory attach will not be used. If there are no registers left, shared memory

will be bypassed and on-node communication will go through the network.

For 32-bit executables that use large pages, dynamic segment allocation (DSA) is

turned on automatically, so any -bmaxdata segments requested are not reserved

first for the user heap, but are instead allocated in the order of usage. Thus, if the

program allocates memory corresponding to the total size of the requested

-bmaxdata segments before MPI_Init or LAPI_Init is called, the behavior would

be similar to the small page behavior that is described in the previous paragraph.

However, if MPI_Init or LAPI_Init is called before the memory allocation,

segments that were intended for use for the program heap may be first obtained

Chapter 3. Managing POE jobs 67

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

and reserved for windows and for communication library features such as shared

memory. In this case, the program will be left with fewer segments to grow the

heap than -bmaxdata had requested. The program is likely to start by claiming all

the segments required for the initialization of the communication subsystem, but

will terminate later in the job run on a malloc failure as its data structure

allocations grow to fill the space that the specified -bmaxdata value was expected

to provide.

For information about how to use large pages, see IBM AIX 5L Version 5.2

Performance Management Guide or IBM AIX 5L Version 5.3 Performance Management

Guide. For information about DSA, see IBM AIX 5L Version 5.2 General Programming

Concepts: Writing and Debugging Programs or IBM AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

Submitting a batch POE job using IBM LoadLeveler

This section is intended for users who wish to submit batch POE jobs using IBM

LoadLeveler. Refer to Using and Administering LoadLeveler for more information.

To submit a batch POE job using LoadLeveler, you need to build a LoadLeveler job

file, which specifies:

v The number of nodes to be allocated

v Any POE options, passed via environment variables using LoadLeveler’s

environment keyword, or passed as command line options using LoadLeveler’s

argument keyword.

v The path to your POE executable (usually /usr/bin/poe).

v Adapter specifications using the network keyword.

The following POE environment variables, or associated command line options, are

validated, but not used, for batch jobs submitted using LoadLeveler.

v MP_PROCS

v MP_RMPOOL

v MP_EUIDEVICE

v MP_EUILIB

v MP_MSG_API (except for programs that use LAPI and also use the LoadLeveler

requirements keyword to specify Adapter=″hps_user″)

v MP_HOSTFILE

v MP_SAVEHOSTFILE

v MP_RESD

v MP_RETRY

v MP_RETRYCOUNT

v MP_ADAPTER_USE

v MP_CPU_USE

v MP_NODES

v MP_TASKS_PER_NODE

v MP_INSTANCES

v MP_USE_BULK_XFER

To run myprog on five nodes, using a Token ring adapter for IP message passing,

with the message level set to the info threshold, you could use the following

LoadLeveler job file. The arguments myarg1 and myarg2 are to be passed to

myprog.

#!/bin/ksh

@ input = myjob.in

68 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|
|
|

|
|
|
|
|

@ output = myjob.out

@ error = myjob.error

@ environment = COPY_ALL; \

 MP_EUILIB=ip; \

 MP_INFO_LEVEL=2

@ executable = /usr/bin/poe

@ arguments = myprog myarg1 myarg2

@ min_processors = 5

@ requirements = (Adapter == "tokenring")

@ job_type = parallel

@ checkpoint = no

To run myprog on 12 nodes from pool 2, using the User Space message passing

interface with the message threshold set to attention, you could use the following

LoadLeveler job file. See the documentation provided with the LoadLeveler

program product for more information.

#!/bin/ksh

@ input = myusjob.in

@ output = myusjob.out

@ error = myusjob.error

@ environment = COPY_ALL; MP_EUILIB=us

@ executable = /usr/bin/poe

@ arguments = myprog -infolevel 1

@ min_processors = 12

@ requirements = (Pool == 2) && (Adapter == "hps_user")

@ job_type = parallel

@ checkpoint = no

Notes:

1. The first token of the arguments string in the LoadLeveler job file must be the

name of the program to be run under POE, unless:

v You use the MP_CMDFILE environment variable or the -cmdfile command

line option

v The file you specify with the keyword input contains the name(s) of the

programs to be run under POE.
2. When setting the environment string, make sure that no white space characters

follow the backslash, and that there is a space between the semicolon and

backslash.

3. When LoadLeveler allocates nodes for parallel execution, POE and task 0 will

be executed on the same node.

Chapter 3. Managing POE jobs 69

4. When LoadLeveler detects a condition that should terminate the parallel job, a

SIGTERM will be sent to POE. POE will then send the SIGTERM to each

parallel task in the partition. If this signal is caught or ignored by a parallel

task, LoadLeveler will ultimately terminate the task.

5. Programs that call the usrinfo function with the getinfo parameter, or

programs that use the getinfo function, are not guaranteed to receive correct

information about the owner of the current process.

6. Programs that use LAPI and also the LoadLeveler requirements keyword to

specify Adapter=″hps_user″, must set the MP_MSG_API environment variable

or associated command line option accordingly.

7. If the value of the MP_EUILIB, MP_EUIDEVICE, or MP_MSG_API

environment variable that is passed as an argument to POE differs from the

specification in the network statement of the job command file, the network

specification will be used, and an attention message will be printed.

Submitting an interactive POE job using an IBM LoadLeveler command

file

POE users may specify a LoadLeveler job command file to be used for an

interactive job. Using a LoadLeveler job command file provides the capability to:

v Exploit new or existing LoadLeveler functionality not available using POE

options, such as specification of:

– task geometry

– blocking factor

– machine order

– consumable resources

– memory requirements

– disk space requirements

– machine architecture

For more information on the LoadLeveler functionality you can exploit, refer to

For more information, see Using and Administering LoadLeveler

v Run parallel jobs without specifying a hostfile or pool, thereby causing

LoadLeveler to select nodes for the parallel job from any in its cluster.

v Specify that a job should run from more than 1 pool.

You can use a LoadLeveler job command file with or without a host list file. If you

have created a LoadLeveler job command file for node allocation (either

independently or in conjunction with a host list file), you need to set the

MP_LLFILE environment variable (or use the -llfile flag when invoking the

program) to specify the file. You can specify the LoadLeveler job command file

using its relative or full path name. For example, say the LoadLeveler job

command file is named file.cmd and is located in the directory /u/dlecker. You could:

 Set the MP_LLFILE environment variable: Use the -llfile flag when invoking the program:

ENTER

export MP_LLFILE=/u/dlecker/file.cmd

ENTER

poe program -llfile /u/dlecker/file.cmd

When the MP_LLFILE environment variable, or the -llfile command-line option is

used, the following POE node/adapter specifications are ignored.

v MP_RMPOOL

v MP_EUIDEVICE

70 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

v MP_EUILIB

v MP_RESD

v MP_MSG_API

v MP_ADAPTER_USE

v MP_CPU_USE

v MP_NODES

v MP_TASKS_PER_NODE

v MP_PROCS (when a host list file is not used.)

v MP_INSTANCES

v MP_USE_BULK_XFER

When using this option, the following restrictions apply.

v Cannot be used for batch POE jobs.

v The host list file cannot contain pool requests.

v The MP_PROCS environment variable or the -procs command-line flag must be

used if a host list file is used, otherwise only 1 parallel task will be run on the

first host listed in the host list file.

v Certain LoadLeveler keywords are not allowed in the LoadLeveler job command

file when it is being used for an interactive POE job. Refer to the manual For

more information, see Using and Administering LoadLeveler for a listing of these

keywords.

Generating an output LoadLeveler job command file

When using LoadLeveler for submitting an interactive job, you can, provided you

are not already using a LoadLeveler job command file, generate an output

LoadLeveler job command file. This output LoadLeveler job command file contains

the LoadLeveler settings that result from the environment variables and/or

command line options for the current invocation of POE. If you are unfamiliar

with LoadLeveler and its job command files, this provides an easy starting point

for creating LoadLeveler job command files. Once you create an output

LoadLeveler job command file, you can then, for subsequent submissions, modify

it to contain additional LoadLeveler specifications (such as new LoadLeveler

functionality available only through using a LoadLeveler job command file).

Be aware that you cannot generate a LoadLeveler job command file if you are

already using one; in other words, if the MP_LLFILE environment variable or the

-llfile command line flag is used. You also cannot generate an output LoadLeveler

job command file if you are submitting a batch job.

To generate a LoadLeveler job command file, you can use the MP_SAVE_LLFILE

environment variable to specify the name that the output LoadLeveler job

command file should be saved as. You can specify the output LoadLeveler job

command file name using a relative or full path name. As with most POE

environment variables, you can temporarily override the value of

MP_SAVE_LLFILE using its associated command-line flag -save_llfile. For

example, to save the output LoadLeveler job command file as file.cmd in the

directory /u/wlobb, you could:

 Set the MP_SAVE_LLFILE environment variable: Use the -save_llfile flag when invoking the program:

ENTER

export MP_SAVE_LLFILE=/u/wlobb/file.cmd

ENTER

poe program -save_llfile /u/wlobb/file.cmd

Chapter 3. Managing POE jobs 71

Running programs under the C shell

During normal configuration of an SP system, the Automount Daemon (amd) is

used to mount user directories. amd’s maps use the symbolic file system links,

rather than the physical file system links. While the Korn shell keeps track of file

system changes, so that a directory is always available, this mapping does not take

place in the C shell. This is because the C shell only maintains the physical file

system links. As a result, users that run POE from a C shell may find that their

current directory (for example /a/moms/fileserver/sis), is not known to amd, and

POE fails with message 0031-214 (unable to change directory).

By default, POE uses the Korn shell pwd command to obtain the name of the

current directory. This works for C shell users if the current directory is either:

v The home directory

v Not mounted by amd.

If neither of the above are true (for example, if the user’s current directory is a

subdirectory of the home directory), then POE provides another mechanism to

determine the correct amd name; the MP_REMOTEDIR environment variable.

POE recognizes the MP_REMOTEDIR environment variable as the name of a

command or Korn shell script that echoes a fully-qualified file name.

MP_REMOTEDIR is run from the current directory from which POE is started.

If you do not set MP_REMOTEDIR, the command defaults to pwd, and is run as

ksh -c pwd. POE sends the output of this command to the remote nodes and uses

it as the current directory name.

You can set MP_REMOTEDIR to some other value and then export it. For

example, if you set MP_REMOTEDIR=″echo /tmp″, the current directory on the

remote nodes becomes /tmp on that node, regardless of what it is on the home

node.

The script mpamddir is also provided in /usr/lpp/ppe.poe/bin, and the setting

MP_REMOTEDIR=mpamddir will run it. This script determines whether or not

the current directory is a mounted file system. If it is, the script searches the amd

maps for this directory, and constructs a name for the directory that is known to

amd. You can modify this script or create additional ones that apply to your

installation.

Note: Programs that depend upon the name of the current directory for correct

operation may not function properly with an alternate directory name. In

this case, you should carefully evaluate how to provide an appropriate name

for the current directory on the home nodes.

If you are executing from a subdirectory of your home directory, and your home

directory is a mounted file system, it may be sufficient to replace the C shell name

of the mounted file system with the contents of $HOME. One approach would be:

export MP_REMOTEDIR=pwd.csh

or for C shell users:

setenv MP_REMOTEDIR pwd.csh

where the file pwd.csh is:

72 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

#!/bin/csh -fe

save the current working directory name

set oldpwd =)pwd)

get the name of the home directory

cd $HOME

set hmpwd =)pwd)

replace the home directory prefix with the contents of $HOME

set sed_home =)echo $HOME | sed ’s/\//\\\//g’)

set sed_hmpwd =)echo $hmpwd | sed ’s/\//\\\//g’)

set newpwd =)echo $oldpwd | sed "s/$sed_hmpwd/$sed_home/")

echo the result to be used by amd

echo $newpwd

Using MP_CSS_INTERRUPT

The MP_CSS_INTERRUPT environment variable may take the value of either yes

or no. By default it is set to no. In certain applications, setting this value to yes

will provide improved performance.

The following briefly summarizes some general application characteristics that

could potentially benefit from setting MP_CSS_INTERRUPT=yes.

Applications which have the following characteristics may see performance

improvements from setting the POE environment variable MP_CSS_INTERRUPT

to yes:

v Applications that use nonblocking send or receive operations for communication.

v Applications that have non-synchronized sets of send or receive pairs. In other

words, the send from node0 is issued at a different point in time with respect to

the matching receive in node1.

v Applications that do not issue waits for nonblocking send or receive operations

immediately after the send or receive, but rather do some computation prior to

issuing the waits.

In all of the previous cases, the application is taking advantage of the

asynchronous nature of the nonblocking communication subroutines. This

essentially means that the calls to the nonblocking send or receive routines do not

actually ensure the transmission of data from one node to the next, but only post

the send or receive and then return immediately back to the user application for

continued processing. However, since the User Space protocol executes within the

user’s process, it must regain control from the application to complete

asynchronous requests for communication.

The communication subsystem can regain control from the application in any one

of three different methods:

1. Any subsequent calls to the communication subsystem to post send or receive,

or to wait on messages.

Chapter 3. Managing POE jobs 73

2. A timer pop occurring periodically to allow the communication subsystem to

do recovery for transmission errors and to make progress on pending

nonblocking communications.

3. If the value of MP_CSS_INTERRUPT is set to yes, the communication

subsystem device driver will notify the user application when data is received

or buffer space is available to transmit data.

Method 1 and Method 2 are always enabled. Method 3 is controlled by the POE

environment variable MP_CSS_INTERRUPT, and is enabled when this variable is

set to yes.

For those applications that have the characteristics mentioned previously, this

implies that when using asynchronous communication the completion of the

communication must occur through one of the these three methods. In the case

that MP_CSS_INTERRUPT is not enabled, only the first two methods are

available to process communication. Depending upon the amount of time between

the non-synchronized send or receive pairs, or between the nonblocking send or

receive and the corresponding waits, the actual transmission of data may only

complete at the matching wait call. If this is the case, it is possible that an

application may see a performance degradation due to unnecessary processor

stalling waiting for communication.

As an example, consider the following application template, where both processors

execute the same code, and processor 0 sends and receives data from processor 1.

 DO LOOP

 MPI_ISEND (A, request1)

 MPI_IRECV (B, request2)

 MPI_WAIT (request2, nbytes)

 COMPUTE LOOP1 (uses B)

 MPI_WAIT (request1, nbytes)

 COMPUTE LOOP2 (modifies A)

 ENDDO

In this example, application B is guaranteed to be received after the wait for

request2, and more than likely the data is actually received during the wait call. B

can then be safely used in the compute loop1. A is not guaranteed to be sent until

the wait for request1. Therefore, A cannot be modified until after this wait.

With MP_CSS_INTERRUPT=no, it is likely that processor0 receives B during the

wait for request2, and enters the compute loop1 before the send of A has

completed. In this case, processor1 will stall waiting for the completion of the wait

for request2, which will not complete until processor0 completes the compute

loop1 and reaches the wait for request1. The stalling of processor1 is directly

74 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

related to the noncontinuous flow of communication. If

MP_CSS_INTERRUPT=yes, when the communication is ready to complete, the

communication subsystem device driver sends a signal to the application and

causes the application to immediately complete the communication. Therefore data

flow is continuous and smooth. The send of A can be completed, even during the

compute loop1, preventing the stalling of processor1 and improving overall

performance of this application.

Finally, note that there is a cost associated with handling the signals when

MP_CSS_INTERRUPT is set to yes. In some cases, this cost can degrade

application performance. Therefore, only use MP_CSS_INTERRUPT for those

applications that require it.

Note: MPI-IO and MPI-1-sided communication enables interrupts when in use,

and disables them afterwards. If either the MP_CSS_INTERRUPT

environment variable or one of the control functions is explicitly set, MPI

will not alter the value for the remainder of the run.

Support for performance improvements

POE provides interfaces to improve interrupt mode latency.

Interrupt mode control

PE provides three application programming interfaces to help you enable or

disable interrupts on specific tasks, based on the communication patterns of the

tasks. If a task is frequently in the communication library, then the application can

turn interrupts off for that particular task for the duration of the program. The

application can enable interrupts when the task is not going to be in the

communication subsystem often. The enable or disable interfaces override the

setting of the MP_CSS_INTERRUPT environment variable.

The following three functions allow you to control dynamically masking interrupts

on individual nodes, and query the state of interrupts. Only “all” nodes or “none”

can be selected to statically enable or disable running in interrupt mode.

 int mpc_queryintr() - for C programs

 void mp_queryintr(int rc) - for Fortran programs

This function returns 0 if the node on which it is executed has interrupts turned

off, and it returns 1 otherwise.

 int mpc_disableintr() - for C programs

 void mp_disableintr(int rc) - for Fortran programs

This function disables interrupts on the node on which it is executed. Return code

= 0, if successful, -1 otherwise.

 int mpc_enableintr() - for C programs

 void mp_enableintr(int rc) - for Fortran programs

This function enables interrupts on the node on which it is executed. Return code

= 0, if successful, -1 otherwise.

Note: The last two of the previous functions override the setting of the

environment variable MP_CSS_INTERRUPT. These functions may be useful

in reducing latency if the application is doing blocking recv/wait and

Chapter 3. Managing POE jobs 75

interrupts are otherwise enabled. Interrupts should be turned off before

executing blocking communication calls and turned on immediately after

those calls.

You can use all of the above functions for programs running IP.

Parallel file copy utilities

During the course of developing and running parallel applications on numerous

nodes, the potential need exists to efficiently copy data and files to and from a

number of places. POE provides three utilities for this reason:

1. mcp - to copy a single file from the home node to a number of remote nodes.

This was discussed briefly in “Step 2: Copy files to individual nodes” on page

9.

2. mcpscat - to copy a number of files from task 0 and scatter them in sequence to

all tasks, in a round robin order.

3. mcpgath - to copy (or gather) a number of files from all tasks back to task 0.

mcp is for copying the same file to all tasks. The input file must reside on task 0.

You can copy it to a new name on the other tasks, or to a directory. It accepts the

source file name and a destination file name or directory, in addition to any POE

command line argument, as input parameters.

mcpscat is intended for distributing a number of files in sequence to a series of

tasks, one at a time. It will use a round robin ordering to send the files in a one to

one correspondence to the tasks. If the number of files exceeds the number of

tasks, the remaining files are sent in another round through the tasks.

mcpgath is for when you need to copy a number of files from each of the tasks

back to a single location, task 0. The files must exist on each task. You can

optionally specify to have the task number appended to the file name when it is

copied.

Both mcpscat and mcpgath accept the source file names and a destination

directory, in addition to any POE command line argument, as input parameters.

You can specify multiple file names, a directory name (where all files in that

directory, not including subdirectories, are copied), or use wildcards to expand into

a list of files as the source. Wildcards should be enclosed in double quotes,

otherwise they will be expanded locally, which may not produce the intended file

name resolution.

These utilities are actually message passing applications provided with POE. Their

syntax is described in Appendix A, “Parallel environment commands,” on page 81.

Using RDMA

Remote Direct Memory Access (RDMA) is a mechanism which allows large

contiguous messages to be transferred while reducing the message transfer

overhead.

To use RDMA, MP_USE_BULK_XFER must be set to YES. The default is NO.

Bulk data transfer is possible only using RDMA. If necessary,

MP_USE_BULK_XFER can be overridden with the command line option,

-use_bulk_xfer.

76 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|

|
|
|

|
|
|
|

Improving Application Scalability Performance

There are certain highly-tuned, fine-grained MPI parallel applications that may

benefit from using special tuning and dispatching capabilities provided by AIX and

Parallel Environment, particularly in system and application environments where

scalability and performance are important concerns. Two features that are available

for such applications are:

v POE priority adjustment co-scheduler

v AIX Dispatcher tuner

Interaction is required on the part of the system administrator to assess the overall

need and options available through these features, and to make them available for

general users. With high-computing performance environments, there are certain

issues to be considered, based on a variety of factors, some of which may require

selecting kernel options that require a system reboot or using workload balancing

to dedicated processors for offloading critical system activity.

Users may wish to consult with their system administrator about allowing certain

options to be made available to them for their needs. Such options and factors

should be carefully weighed and evaluated when using these capabilities.

POE priority adjustment co-scheduler

Certain applications can benefit from enhanced dispatching priority (co-scheduling)

during execution. POE provides a service for periodically adjusting the dispatch

priority of a user’s task between set boundaries, giving the tasks improved

execution priority.

The PE co-scheduler works by alternately, and synchronously, raising and lowering

the AIX dispatch priority of the tasks in an MPI job. The objective is for all the

tasks to have the same priority across all processors, and to force other system

activity into periodic and aligned time slots during which the MPI tasks do not

actively compete for CPU resources.

When the MP_PRIORITY environment variable is specified, POE attempts to use

the co-scheduler to adjust the priority of the tasks, based on the values specified

and the constraints defined by the system administrator. The value of the

MP_PRIORITY environment variable can be specified in one of two forms:

v A job class, which defines the priority adjustment values

v A list of priority adjustment values, which must fall within predefined limits.

The system administrator needs to define the available constraints and values by

defining entries in the /etc/poe.priority file. Refer to IBM Parallel Environment for

AIX: Installation for specific information on defining entries in the /etc/poe.priority

file.

When you specify a job class as a value for MP_PRIORITY, the specified class

must exist in the /etc/poe.priority file on each node. POE looks in /etc/poe.priority

and finds the entry that corresponds to that class, and then uses it to determine the

priority adjustment values to be used. The class entry defines the following

parameters:

v User name. The user name can also be in the form of an asterisk (wildcard).

v Class name. When a wildcard is used, the class can be used to define a

minimum or maximum class threshold.

Chapter 3. Managing POE jobs 77

|

|
|
|
|
|

|

|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|

|
|
|
|

|
|
|
|
|

|

|
|

v High priority (more favored).

v Low priority (less favored).

v Percentage of time to run at high priority.

v Duration of adjustment cycle.

When you specify a list of values for MP_PRIORITY, you must specify the string

as a colon-separated list in the following format:

hipriority:lopriority:percentage:period

When the value of the MP_PRIORITY environment variable is specified as a list of

values, it is evaluated against the maximum and minimum settings in the

/etc/poe.priority file. The values will only take effect under the following

conditions:

v When a maximum setting is specified in the file, and each value in the

environment variable is less than or equal to the corresponding value in the file.

v When a minimum setting is specified in the file, and each value in the

environment variable is greater than or equal to the corresponding value in the

file.

Refer to IBM Parallel Environment for AIX: Installation for specific and additional

details on the format and meaning of these values.

When using the co-scheduler, you should also consider the following:

v The normal AIX dispatch priority is 60. If both high and low priority are set to

values less than 60, a compute-bound job will prevent other users from being

dispatched. The dispatch preference goes to the lower number.

v The high priority value must be equal to or greater than 12. If the value is

between 12 and 20, the job competes with system processes for cycles, and may

disrupt normal system activity.

v If the high priority value is less than 30, keystroke capture will be inhibited

during the high priority portion of the dispatch cycle.

v If high priority is less than 16, the job will not be subject to the AIX scheduler

during the high priority portion of the cycle.

v The low priority value must be less than or equal to 254.

v If the high priority value is less than (more favored than) the priority of the high

performance switch fault-service daemon, and if the low priority portion of the

adjustment cycle is less than two seconds, then switch fault recovery will be

unsuccessful, and the node will be disconnected from the switch.

v The co-scheduling facility allows programs using the User Space library to

maximize their effectiveness in interchanging data. The process may also be used

for programs using IP, either over the switch or over another supported device.

However, if the high priority phase of the user’s program is more favored than

the network processes (typically priorities 36-39), the required IP message

passing traffic may be blocked and cause the program to hang.

v Consult the include file /usr/include/sys/pri.h for definitions of the priorities

used for normal AIX functions.

v Each node may have a different /etc/poe.priority file that defines the scheduling

parameters for tasks running on that node.

v The primary performance enhancement is achieved when the user’s application

can run with minimal interference from the standard AIX daemons running on

78 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|

|

|

|

|
|

|

|
|
|
|

|
|

|
|
|

|
|

|

|
|
|

|
|
|

|
|

|
|

|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

each node. This is achieved when the user’s application is scheduled with a

fixed priority that is more favored than the daemon’s, which typically run with

a priority setting of 60.

v More favored priority values are numerically smaller than less favored priority

values

The co-scheduler is designed to work with a globally synchronized external clock,

such as the switch clock registers on the pSeries High Performance Switch. When

the co-scheduler is started on a node, it looks for the existence of the switch clock.

If one is found, the co-scheduler turns off the Network Time Protocol (NTP)

daemon, if it is running, and synchronizes the AIX clock seconds with the switch

clock seconds. The intent is to globally synchronize the AIX time slices applied to

the parallel job. When the job terminates, the NTP daemon is restarted, if it had

been turned off.

Status and error messages generated during the priority adjustment process are

written to the file /tmp/pmadjpri.log. Also, any error or diagnostic information

from POE’s invocation of the priority adjustment function will be recorded in the

partition manager log (controlled by the POE MP_PMDLOG environment variable

and -pmdlog command line flag.)

AIX Dispatcher tuning

The co-scheduler can be used in conjunction with the AIX Dispatcher functions to

optimize the process dispatch and interrupt management in the kernel, to allow

fine-grained parallel applications to achieve better performance. The AIX schedo

command offers the following options that may be of interest:

v big_tick_size, to unstagger (real-time kernel only) and reduce the number of

physical timer interrupts per second. Increasing the big_tick_size increases the

interval between activations of the dispatcher, and can reduce the amount of

overhead for dispatching.

v force_grq, to assign all processes that are not part of the PE/MPI job to the

global run queue. This allows all non-MPI activity to compete equally for

available CPU resources. Without setting this option, non-MPI processes may

queue up for resources on a busy processor, when another processor is idle.

The use of such tunables are only fully effective if the AIX kernel is running with

the Real Time option, requiring a system reboot. This is required to produce the

interrupts necessary for the co-scheduler to modify the priorities, and no longer

stagger the interrupts.

Once the big_tick_size option is changed, interrupts can no longer be staggered

until the system is rebooted, even if big_tick_size is reset. In addition, if the

real-time kernel is enabled without any change to big_tick_size, the interrupts will

remain staggered.

Also, using the force_grq option could degrade system performance when a

system is not dedicated to running a parallel job.

The system administrator must enable or disabled these options as well as perform

the necessary system reboot.

For additional details on enabling the co-scheduler and AIX dispatcher, see IBM

Parallel Environment for AIX: Installation.

Chapter 3. Managing POE jobs 79

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

80 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Appendix A. Parallel environment commands

This appendix contains the manual pages for the PE commands discussed

throughout this book. Each manual page is organized into the sections listed

below. The sections always appear in the same order, but some appear in all

manual pages while others are optional.

NAME

Provides the name of the command described in the manual page, and a

brief description of its purpose.

SYNOPSIS

Includes a diagram that summarizes the command syntax, and provides a

brief synopsis of its use and function. If you are unfamiliar with the

typographic conventions used in the syntax diagrams, see “Conventions

and terminology used in this book” on page viii.

FLAGS

Lists and describes any required and optional flags for the command.

DESCRIPTION

Describes the command more fully than the NAME and SYNOPSIS

sections.

ENVIRONMENT VARIABLES

Lists and describes any applicable environment variables.

EXAMPLES

Provides examples of ways in which the command is typically used.

FILES

Lists and describes any files related to the command.

RELATED INFORMATION

Lists commands, functions, file formats, and special files that are employed

by the command, that have a purpose related to the command, or that are

otherwise of interest within the context of the command.

© Copyright IBM Corp. 1993, 2005 81

mcp

NAME

mcp – Allows you to propagate a copy of a file to multiple nodes on an IBM

pSeries or SP system.

SYNOPSIS

mcp infile [outfile] [POE options]

In the previous command synopsis, the infile is the name of the file to be copied.

You can copy to a new name by specifying an outfile. If you do not provide the

outfile name, the file will be placed in its current directory on each node. The

outfile can be either an explicit output file name or a directory name. When a

directory is specified, the file is copied with the same name to that directory.

DESCRIPTION

The mcp command allows you to propagate a copy of a file to multiple nodes on

an IBM pSeries or SP. The file must initially reside (or be NFS-mounted) on at least

one node.

mcp is a POE program and, therefore, all POE options are available. You can set

POE options with either command line flags or environment variables. The

number of nodes to copy the file to (-procs), and the message passing protocol

used to copy the file (-euilib) are the POE options of most interest. The input file

must be readable from the node assigned to task 0.

Note: A POE job loads faster if a copy of the job resides on each node. For this

reason, it is suggested that you use mcp to copy your executable to a file

system such as /tmp, which resides on each node.

Return codes are:

129

incorrect usage

130

error opening input file

131

error opening to file on originating node

132

error writing data to to file on originating node

133

no room on remote node’s file system

134

error opening file on remote node

135

error writing data on remote node

136

error renaming temp file to file name

mcp

82 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

137

input file is empty

138

invalid block size

139

error allocating storage

ENVIRONMENT VARIABLES

MP_BLKSIZE

sets the block size used for copying the data. This can be a value between

1 and 8,000,000 (8 megabytes). The default is 100,000 (100K).

EXAMPLES

1. To copy a file from your current directory to the current directory for 16 tasks,

using the User Space protocol, enter:

mcp filename -procs 16 -euilib us

2. To copy a filename from your current directory to the /tmp directory for 16

tasks, using IP, enter:

mcp filename /tmp -procs 16 -euilib ip

3. To copy a file from your current directory to a different filename for 16 tasks,

enter:

mcp filename /tmp/newfilename -procs 16

RELATED INFORMATION

Commands: rcp(1)

mcp

Appendix A. Parallel environment commands 83

mcpgath

NAME

mcpgath – Takes files from each task of tasks 0 through task N and copies them

back in sequence to task 0.

SYNOPSIS

mcpgath [-ai] source ... destination [POE options]

Source is one of the following:

v one or more existing file names - files will be copied with the same names to the

destination directory on task 0. Each file name specified must exist on all tasks

involved in the copy.

v a directory name - all files in that directory on each task are copied with the

same names to the destination directory on task 0.

v an expansion of file names, using wildcards - files are copied with the same

names to the destination directory. All wildcarded input strings must be

enclosed in double quotes.

Destination is an existing destination directory name to where the data will be

copied. The destination directory must be the last item specified before any POE

flags.

FLAGS

-a An optional flag that appends the task number to the end of the file name

when it is copied to task 0. This is for task identification purposes, to know

where the data came from. The -a and -i flags can be combined to check for

existing files appended with the task number.

-i An optional flag that checks for duplicate or existing files of the same name,

and does not replace any existing file found. Instead, issues an error message

and continues with the remaining files to be copied. The -a and -i flags can be

combined to check for existing files appended with the task number.

See Chapter 2, “Executing parallel programs” for information on POE options.

DESCRIPTION

The mcpgath function determines the list of files to be gathered on each task. This

function also resolves the source file, destination directory, and path names with

any meta characters, wildcard expansions, and so on, to come up with valid file

names. Enclose wildcards in double quotes, otherwise they will be expanded

locally on the task from where the command is issued, which may not produce the

intended file name resolution.

mcpgath is a POE program and, therefore, all POE options are available. You can

set POE options with either command line flags or environment variables. The

number of nodes to copy the file to (-procs), and the message passing protocol

used to copy the file (-euilib) are the POE options of most interest.

Return codes are:

mcpgath

84 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

129

invalid number of arguments specified

130

invalid option flag specified

131

unable to resolve input file name(s)

132

could not open input file for read

133

no room on destination node’s file system

134

error opening file output file

135

error creating output file

136

error writing to output file

137

MPI_Send of data failed

138

final MPI_Send failed

139

MPI_Recv failed

140

invalid block size

141

error allocating storage

142

total number of tasks must be greater than one

ENVIRONMENT VARIABLES

MP_BLKSIZE

sets the block size used for copying the data. This can be a value between

1 and 8,000,000 (8 megabytes). The default is 100,000 (100K).

EXAMPLES

1. You can copy a single file from all tasks into the destination directory. For

example, enter:

mcpgath -a hello_world /tmp -procs 4

This will copy the file hello_world (assuming it is a file and not a directory)

from tasks 0 through 3 as to task 0:

From task 0: /tmp/hello_world.0

From task 1: /tmp/hello_world.1

mcpgath

Appendix A. Parallel environment commands 85

From task 2: /tmp/hello_world.2

From task 3: /tmp/hello_world.3

2. You can specify any number of files as source files. The destination directory

must be the last item specified before any POE flags. For example:

mcpgath -a file1.a file2.a file3.a file4.a file5.a /tmp -procs 4

will take file1.a through file5.a from the local directory on each task and copy

them back to task 0. All files specified must exist on all tasks involved. The file

distribution will be as follows:

From Task 0: /tmp/file1.a.0

From Task 1: /tmp/file1.a.1

From Task 2: /tmp/file1.a.2

From Task 3: /tmp/file1.a.3

From Task 0: /tmp/file2.a.0

From Task 1: /tmp/file2.a.1

From Task 2: /tmp/file2.a.2

From Task 3: /tmp/file2.a.3

From Task 0: /tmp/file3.a.0

From Task 1: /tmp/file3.a.1

From Task 2: /tmp/file3.a.2

From Task 3: /tmp/file3.a.3

From Task 0: /tmp/file4.a.0

From Task 1: /tmp/file4.a.1

From Task 2: /tmp/file4.a.2

From Task 3: /tmp/file4.a.3

From Task 0: /tmp/file5.a.0

From Task 1: /tmp/file5.a.1

From Task 2: /tmp/file5.a.2

From Task 3: /tmp/file5.a.3

3. You can specify wildcard values to expand into a list of files to be gathered.

For this example, assume the following distribution of files before calling

mcpgath:

Task 0 contains file1.a and file2.a

Task 1 contains file1.a only

Task 2 contains file1.a, file2.a, and file3.a

Task 3 contains file4.a, file5.a, and file6.a

mcpgath

86 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Enter:

mcpgath -a "file*.a" /tmp -procs 4

This will pass the wildcard expansion to each task, which will resolve into the

list of locally existing files to be copied. This results in the following

distribution of files on task 0:

From Task 0: /tmp/file1.a.0

From Task 0: /tmp/file2.a.0

From Task 1: /tmp/file1.a.1

From Task 2: /tmp/file1.a.2

From Task 2: /tmp/file2.a.2

From Task 2: /tmp/file3.a.2

From Task 3: /tmp/file4.a.3

From Task 3: /tmp/file5.a.3

From Task 3: /tmp/file6.a.3

4. You can specify a directory name as the source, from which the files to be

gathered are found. For this example, assume the following distribution of files

before calling mcpgath:

Task 0 /test contains file1.a and file2.a

Task 1 /test contains file1.a only

Task 2 /test contains file1.a and file3.a

Task 3 /test contains file2.a, file4.a, and file5.a

Enter:

mcpgath -a /test /tmp -procs 4

This results in the following file distribution:

From Task 0: /tmp/file1.a.0

From Task 0: /tmp/file2.a.0

From Task 1: /tmp/file1.a.1

From Task 2: /tmp/file1.a.2

From Task 2: /tmp/file3.a.2

From Task 3: /tmp/file2.a.3

From Task 3: /tmp/file4.a.3

From Task 3: /tmp/file5.a.3

mcpgath

Appendix A. Parallel environment commands 87

mcpscat

NAME

mcpscat – Takes a number of files from task 0 and scatters them in sequence to all

tasks, in a round robin order.

SYNOPSIS

mcpscat [-f] [-i] source ...

destination

[POE options]

Source can be one of the following:

v a single file name - file is copied to all tasks

v a single file name that contains a list of file names (-f option)

v two or more file names - files will be distributed in a round robin order to the

tasks

v an expansion of file names, using wildcards - files will be distributed in a round

robin order to the tasks

v a directory name - all files in that directory are copied in a round robin order to

the tasks.

Destination is an existing destination directory name to where the data will be

copied.

FLAGS

-f Is an optional flag that indicates that the first file contains the names of the

source files that are to be scattered. Each file name, in the file, must be

specified on a separate line. No wildcards are supported when this option is

used. Directory names are not supported in the file either. When this option is

used, the mcpscat parameters should consist of a single source file name (for

the list of files) and a destination directory. The files will then be scattered just

as if they had all been specified on the command line in the same order as

they are listed in the file.

-i Checks for duplicate or existing files of the same name, and does not replace

any existing file found. Instead, issues an error message and continues with the

remaining files to be copied. Without this flag, the default action is to replace

any existing files with the source file.

See Chapter 2, “Executing parallel programs” for information on POE options.

DESCRIPTION

The mcpscat function determines the order in which to distribute the files, using a

round robin method, according to the list of nodes and number of tasks. Files are

sent in a one-to-one correspondence to the nodes in the list of tasks. If the number

of files specified is greater than the number of nodes, the remaining files are sent

in another round through the list of nodes. Enclose wildcards in double quotes,

otherwise they will be expanded locally on the task from where the command is

issued, which may not produce the intended file name resolution.

mcpscat

88 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

mcpscat is a POE program and, therefore, all POE options are available. You can

set POE options with either command line flags or environment variables. The

number of nodes to copy the file to (-procs), and the message passing protocol

used to copy the file (-euilib) are the POE options of most interest.

Return codes are:

129

invalid number of arguments specified

130

invalid option flag specified

131

unable to resolve input file name(s)

132

could not open input file for read

133

no room on destination node’s file system

134

error opening file output file

135

error creating output file

136

MPI_Send of data failed

137

final MPI_Send failed

138

MPI_Recv failed

139

failed opening temporary file

140

failed writing temporary file

141

error renaming temp file to filename

142

input file is empty (zero byte file size)

143

invalid block size

144

error allocating storage

145

number of tasks and files do not match

146

not enough memory for list of file names

mcpscat

Appendix A. Parallel environment commands 89

ENVIRONMENT VARIABLES

MP_BLKSIZE

sets the block size used for copying the data. This can be a value between

1 and 8,000,000 (8 megabytes). The default is 100,000 (100K).

EXAMPLES

1. You can copy a single file to all tasks into the destination directory. For

example, enter:

mcpscat filename /tmp -procs 4

This will take the file and distribute it to tasks 0 through 3 as /tmp/filename.

2. You can specify any number of files as source files. The destination directory

must be the last item specified before any POE flags. For example:

mcpscat file1.a file2.a file3.a file4.a file5.a /tmp -procs 4

will take file1.a through file5.a from the local directory and copy them in a

round robin order to tasks 0 through 3 into /tmp. The file distribution will be as

follows:

Task 0: /tmp/file1.a

Task 1: /tmp/file2.a

Task 2: /tmp/file3.a

Task 3: /tmp/file4.a

Task 0: /tmp/file5.a

3. You can specify the source files to copy in a file. For example:

mcpscat -f file.list /tmp -procs 4

will produce the same results as the previous example if as file.list contains five

lines with the file names file1.a through file5.a in it.

4. You can specify wildcard values to expand into a list of files to be scattered.

Enter:

mcpscat "file*.a" /tmp -procs 4

Assuming Task 0 contains file1.a, file2.a, file3.a, file4.a, and file5.a in its home

directory, this will result in a similar distribution as in the previous example.

5. You can specify a directory name as the source, from which the files to be

scattered are found. Assuming /test contains myfile.a, myfile.b, myfile.c, myfile.d,

myfile.f, and myfile.g on Task 0, enter:

mcpscat /test /tmp -procs 4

This results in the following file distribution:

Task 0: /tmp/myfile.a

Task 1: /tmp/myfile.b

Task 2: /tmp/myfile.c

mcpscat

90 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Task 3: /tmp/myfile.d

Task 0: /tmp/myfile.f

Task 1: /tmp/myfile.g

mcpscat

Appendix A. Parallel environment commands 91

mpamddir

NAME

mpamddir – echoes an amd-mountable directory name.

SYNOPSIS

mpamddir

or, if you’re using the Parallel Environment for AIX:

export MP_REMOTEDIR=mpamddir

This script determines whether or not the current directory is a mounted file

system. If it is, it looks to see if it appears in the amd maps, and constructs a name

for the directory that is known to amd. You can modify this script, or create

additional ones that apply to your installation.

By default, POE uses the Korn shell pwd command to obtain the name of the

current directory to pass to the remote nodes for execution. This works for C shell

users if the current directory is:

v The home directory

v Not mounted by amd, the AutoMount Daemon.

If this is not the case, (for example, if the user’s current directory is a subdirectory

of the home directory), then you can supply your own script for providing the

name of the current directory on the remote nodes.

To use mpamddir as the script for providing the name, export the environment

variable MP_REMOTEDIR, and set it to mpamddir.

RELATED INFORMATION

Commands: ksh(1), poe(1), csh(1)

mpamddir

92 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

mpcc_r

NAME

mpcc_r – Invokes a shell script to compile C programs which use MPI.

SYNOPSIS

mpcc_r [cc_flags]... program.c

The mpcc_r shell script compiles C programs while linking in the Partition

Manager, the Message Passing Interface (MPI), and (optionally) Low-level

Applications Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlc_r or cc_r command can

also be used on mpcc_r. For a complete listing of these flag options, refer to the

manual page for the compiler cc_r command. Typical options to mpcc_r include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references. This object file is needed

for debugging with the pdbx debugger.

-o names the executable.

-l (lower-case L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (upper-case i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see the

appendix on “Profiling Programs” in IBM Parallel Environment for AIX:

Operation and Use, Volume 2.

-pg

enables profiling with the xprofiler and gprof commands. For more

information, see the “Xprofiler” information in AIX 5L Version 5.2 Performance

Tools Guide and Reference or AIX 5L Version 5.3 Performance Tools Guide and

Reference and the appendix on “Profiling Programs” in IBM Parallel Environment

for AIX: Operation and Use, Volume 2.

-q64

enables compiling of 64-bit applications.

mpcc_r

Appendix A. Parallel environment commands 93

|
|

DESCRIPTION

The mpcc_r shell script invokes the xlc_r command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpcc_r to the xlc_r command, so any of the xlc_r options can

be used on the mpcc_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the

poe command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

ENVIRONMENT VARIABLES

MP_PREFIX

sets an alternate path to the scripts library. If not set or NULL, the

standard path /usr/lpp/ppe.poe is used. If this environment variable is set,

then all libraries are prefixed by $MP_PREFIX/ppe.poe.

MP_UTE

Setting this variable to yes causes the UTE library to be added to the link

step, allowing the user to collect data from the application using PE

Benchmarker. For more information, see IBM Parallel Environment for AIX:

Operation and Use, Volume 2.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. If set to anything other than

64 or if not set, it will not affect how the executables are built.

EXAMPLES

To compile a C program, enter:

mpcc_r program.c -o program

FILES

When you compile a program using mpcc_r, the following libraries are

automatically selected:

 /usr/lpp/ppe.poe/lib/libmpi_r.a (Message Passing Interface, collective

communication routines)

 /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

 The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

RELATED INFORMATION

Commands: mpCC_r(1), cc(1), pdbx(1)

mpcc_r

94 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

mpCC_r

NAME

mpCC_r – Invokes a shell script to compile C++ programs which use MPI.

SYNOPSIS

mpCC_r [xlC_flags]... program.C

The mpCC_r shell script compiles C++ programs while linking in the Partition

Manager, Message Passing Interface (MPI), and (optionally) Low-level Applications

Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlC_r command can also be

used on mpCC_r. For a complete listing of these flag options, refer to the manual

page for the xlC_r command. Typical options to mpCC_r include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references.

-o names the executable.

-cpp

enables the use of full C++ bindings in MPI.

-l (lower-case L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (upper-case i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see the

appendix on “Profiling Programs” in IBM Parallel Environment for AIX:

Operation and Use, Volume 2.

-pg

enables profiling with the xprofiler and gprof commands. For more

information, see the “Xprofiler” information in AIX 5L Version 5.2 Performance

Tools Guide and Reference or AIX 5L Version 5.3 Performance Tools Guide and

Reference and the appendix on “Profiling Programs” in IBM Parallel Environment

for AIX: Operation and Use, Volume 2.

-q64

enables compiling of 64-bit applications.

mpCC_r

Appendix A. Parallel environment commands 95

|
|

DESCRIPTION

The mpCC_r shell script invokes the xlC_r command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpCC_r to the xlC_r command, so any of the xlC_r options

can be used on the mpCC_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the

poe command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

ENVIRONMENT VARIABLES

MP_PREFIX

sets an alternate path to the scripts library. If not set or NULL, the

standard path /usr/lpp/ppe.poe is used. If this environment variable is set,

then all libraries are prefixed by $MP_PREFIX/ppe.poe.

MP_UTE

Setting this variable to yes causes the UTE library to be added to the link

step, allowing the user to collect data from the application using PE

Benchmarker. For more information, see IBM Parallel Environment for AIX:

Operation and Use, Volume 2.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. If set to anything other than

64 or if not set, it will not affect how the executables are built.

EXAMPLES

To compile a C++ program, enter:

mpCC_r program.C -o program

FILES

When you compile a program using mpCC_r, the following libraries are

automatically selected:

 /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

 /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

 The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

RELATED INFORMATION

Commands: mpcc_r(1), xlC(1), pdbx(1)

mpCC_r

96 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

mpiexec

NAME

mpiexec – Invokes the Parallel Operating Environment (POE) for loading and

executing programs on remote processor nodes. This command invokes the poe

command.

SYNOPSIS

mpiexec -n partition_size program

The mpiexec command is described in the MPI-2 standard as a portable way of

starting MPI jobs; it is provided here to conform with that standard. The mpiexec

command invokes poe to run the specified program. The mpiexec command

translates the -n flag to the -procs flag for the poe command. The mpiexec

command passes all other arguments unchanged to the poe command. Refer to the

poe command man page for additional details on its flags.

FLAGS

In addition to the -n flag described below, all poe command flags are accepted,

and passed unchanged to the poe command.

If you are familiar with the description of the mpiexec command in the MPI-2

standard, please note that we have chosen to implement only the command syntax

required for compliance with that standard. The optional flags have not been

implemented, as our poe command, which is invoked by the mpiexec command,

offers sufficient functionality.

-n

Translated to the -procs flag and passed to the poe command. This determines

the number of program tasks. Valid values are any number from 1 to 4096. If

not set, the default is 1.

EXAMPLES

To invoke an MPI program sample to run as five tasks:

 mpiexec -n 5 sample

RELATED INFORMATION

Commands: poe(1)

mpiexec

Appendix A. Parallel environment commands 97

mpxlf_r

NAME

mpxlf_r – Invokes a shell script to compile Fortran programs which use MPI.

SYNOPSIS

mpxlf_r [xlf_flags]... program.f

The mpxlf_r shell script compiles Fortran programs while linking in the Partition

Manager, the Message Passing Interface (MPI), and (optionally) Low-level

Applications Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlf command can also be used

on mpxlf_r. For a complete listing of these flag options, refer to the manual page

for the xlf command. Typical options to mpxlf_r include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references. This object file is needed

for debugging with the pdbx debugger.

-o names the executable.

-l (lower-case L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (upper-case i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see the

appendix on “Profiling Programs” in IBM Parallel Environment for AIX:

Operation and Use, Volume 2.

-pg

enables profiling with the xprofiler and gprof commands. For more

information, see the “Xprofiler” information in AIX 5L Version 5.2 Performance

Tools Guide and Reference or AIX 5L Version 5.3 Performance Tools Guide and

Reference and the appendix on “Profiling Programs” in IBM Parallel Environment

for AIX: Operation and Use, Volume 2.

-q64

enables compiling of 64-bit applications.

mpxlf_r

98 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|

DESCRIPTION

The mpxlf_r shell script invokes the xlf command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpxlf_r to the xlf command, so any of the xlf options can be

used on the mpxlf_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the

poe command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

There are three versions of mpif.h supplied and the compilation scripts will provide

the include path to select the correct version. A user specified include path

provided through makefile or compilation command line flag will be searched

before the script’s path. If any user specified include path provides an

inappropriate copy of mpif.h, the script will not be able to override and select the

appropriate copy.

ENVIRONMENT VARIABLES

MP_PREFIX

sets an alternate path to the scripts library. If not set or NULL, the

standard path /usr/lpp/ppe.poe is used. If this environment variable is set,

then all libraries are prefixed by $MP_PREFIX/ppe.poe.

MP_UTE

Setting this variable to yes causes the UTE library to be added to the link

step, allowing the user to collect data from the application using PE

Benchmarker. For more information, see IBM Parallel Environment for AIX:

Operation and Use, Volume 2.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. If set to anything other than

64 or if not set, it will not affect how the executables are built.

EXAMPLES

To compile a Fortran program, enter:

mpxlf_r program.f -o program

FILES

When you compile a program using mpxlf_r, the following libraries are

automatically selected:

 /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

 /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

 The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

mpxlf_r

Appendix A. Parallel environment commands 99

RELATED INFORMATION

Commands: mpcc_r(1), xlf_r(1), pdbx(1)

mpxlf_r

100 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

mpxlf90_r

NAME

mpxlf90_r – Invokes a shell script to compile Fortran 90 programs which use MPI.

SYNOPSIS

mpxlf90_r [xlf_flags]... program.f

The mpxlf90_r shell script compiles Fortran 90 programs while linking in the

Partition Manager, the Message Passing Interface (MPI), and (optionally) Low-level

Applications Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlf command can also be used

on mpxlf90_r. For a complete listing of these flag options, refer to the manual page

for the xlf command. Typical options to mpxlf90_r include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references.

-o names the executable.

-l (lower-case L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (upper-case i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see the

appendix on “Profiling Programs” in IBM Parallel Environment for AIX:

Operation and Use, Volume 2.

-pg

enables profiling with the xprofiler and gprof commands. For more

information, see the “Xprofiler” information in AIX 5L Version 5.2 Performance

Tools Guide and Reference or AIX 5L Version 5.3 Performance Tools Guide and

Reference and the appendix on “Profiling Programs” in IBM Parallel Environment

for AIX: Operation and Use, Volume 2.

-q64

enables compiling of 64-bit applications.

mpxlf90_r

Appendix A. Parallel environment commands 101

|
|

DESCRIPTION

The mpxlf90_r shell script invokes the xlf command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpxlf90_r to the xlf command, so any of the xlf options can

be used on the mpxlf90_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the

poe command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

There are three versions of mpif.h supplied and the compilation scripts will provide

the include path to select the correct version. A user specified include path

provided through makefile or compilation command line flag will be searched

before the script’s path. If any user specified include path provides an

inappropriate copy of mpif.h, the script will not be able to override and select the

appropriate copy.

ENVIRONMENT VARIABLES

MP_PREFIX

sets an alternate path to the scripts library. If not set or NULL, the

standard path /usr/lpp/ppe.poe is used. If this environment variable is set,

then all libraries are prefixed by $MP_PREFIX/ppe.poe.

MP_UTE

Setting this variable to yes causes the UTE library to be added to the link

step, allowing the user to collect data from the application using PE

Benchmarker. For more information, see IBM Parallel Environment for AIX:

Operation and Use, Volume 2.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. If set to anything other than

64 or if not set, it will not affect how the executables are built.

EXAMPLES

To compile a Fortran 90 program, enter:

mpxlf90_r program.f -o program

FILES

When you compile a program using mpxlf90_r, the following libraries are

automatically selected:

 /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

 /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

 The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

mpxlf90_r

102 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

RELATED INFORMATION

Commands: mpcc_r(1), xlf_r(1), mpxlf_r(1), pdbx(1)

mpxlf90_r

Appendix A. Parallel environment commands 103

mpxlf95_r

NAME

mpxlf95_r – Invokes a shell script to compile Fortran 95 programs which use MPI.

SYNOPSIS

mpxlf95_r [xlf_flags]... program.f

The mpxlf95_r shell script compiles Fortran 95 programs while linking in the

Partition Manager, the Message Passing Interface (MPI), and (optionally) Low-level

Applications Programming Interface (LAPI).

FLAGS

Any of the compiler flags normally accepted by the xlf95 command can also be

used on mpxlf95_r. For a complete listing of these flag options, refer to the manual

page for the xlf95 command. Typical options to mpxlf95_r include:

-v causes a “verbose” output listing of the shell script.

-g Produces an object file with symbol table references.

-o names the executable.

-l (lower-case L)

names additional libraries to be searched. Several libraries are automatically

included, and are listed below in the CONTEXT section.

Note: Not all AIX libraries are thread safe. Verify that your intended use is

supported.

-I (upper-case i)

names directories for additional includes. The directory /usr/lpp/ppe.poe/include

or the appropriate subdirectory is included automatically. Command line or

makefile hard coding of include paths for PE header files should normally be

avoided. Such specifications will take precedence over the directory selected by

the script and may result in generating incorrect code.

-p

enables profiling with the prof command. For more information, see the

appendix on “Profiling Programs” in IBM Parallel Environment for AIX:

Operation and Use, Volume 2.

-pg

enables profiling with the xprofiler and gprof commands. For more

information, see the “Xprofiler” information in AIX 5L Version 5.2 Performance

Tools Guide and Reference or AIX 5L Version 5.3 Performance Tools Guide and

Reference and the appendix on “Profiling Programs” in IBM Parallel Environment

for AIX: Operation and Use, Volume 2.

-q64

enables compiling of 64-bit applications.

mpxlf95_r

104 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|

DESCRIPTION

The mpxlf95_r shell script invokes the xlf95 command. In addition, the Partition

Manager and data communication interfaces are automatically linked in. The script

creates an executable that dynamically binds with the communication subsystem

libraries.

Flags are passed by mpxlf95_r to the xlf95 command, so any of the xlf95 options

can be used on the mpxlf95_r shell script. The communication subsystem library

implementation is dynamically linked when you invoke the executable using the

poe command. The value specified by the MP_EUILIB environment variable or the

-euilib flag will then determine which communication subsystem library

implementation is dynamically linked.

There are three versions of mpif.h supplied and the compilation scripts will provide

the include path to select the correct version. A user specified include path

provided through makefile or compilation command line flag will be searched

before the script’s path. If any user specified include path provides an

inappropriate copy of mpif.h, the script will not be able to override and select the

appropriate copy.

ENVIRONMENT VARIABLES

MP_PREFIX

sets an alternate path to the scripts library. If not set or NULL, the

standard path /usr/lpp/ppe.poe is used. If this environment variable is set,

then all libraries are prefixed by $MP_PREFIX/ppe.poe.

MP_UTE

Setting this variable to yes causes the UTE library to be added to the link

step, allowing the user to collect data from the application using PE

Benchmarker. For more information, see IBM Parallel Environment for AIX:

Operation and Use, Volume 2.

OBJECT_MODE

Setting this variable to 64 causes the 64–bit libraries to be linked to the

executable, as if the -q64 option had been set. If set to anything other than

64 or if not set, it will not affect how the executables are built.

EXAMPLES

To compile a Fortran 95 program, enter:

mpxlf95_r program.f -o program

FILES

When you compile a program using mpxlf95_r, the following libraries are

automatically selected:

 /usr/lpp/ppe.poe/lib/libmpi_r.a (Message passing interface, collective

communication routines)

 /usr/lpp/ppe.poe/lib/libppe_r.a (PE common routines)

 The following library is selected if it exists as a symbolic link to

/opt/rsct/lapi/lib/liblapi_r.a:

/usr/lib/liblapi_r.a

mpxlf95_r

Appendix A. Parallel environment commands 105

RELATED INFORMATION

Commands: mpcc_r(1), xlf95_r(1), mpxlf_r(1), mpxlf95(1), pdbx(1)

mpxlf95_r

106 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

poe

NAME

poe – Invokes the Parallel Operating Environment (POE) for loading and executing

programs on remote processor nodes.

SYNOPSIS

poe [-h] [program] [program_options]...

[-adapter_use adapter_specifier]

[-buffer_mem {buffer_size | preallocated_buffer_size,maximum_buffer_size}]

[-bulk_min_msg_size message_size]

[-cc_scratch_buf {yes | no}]

[-clock_source {aix | switch}]

[-cmdfile commands_file]

[-coredir directory_prefix_string | none]

[-corefile_format { lightweight_corefile_name | STDERR }]

[-corefile_sigterm {yes | no}]

[-cpu_use cpu_specifier]

[-css_interrupt {yes | no}]

[-debug_notimeout non-null string of characters]

[-eager_limit size_limit]

[-euidevelop {yes | no | deb | min | nor}]

[-euidevice device_specifier]

[-euilib {ip | us}]

[-euilibpath path_specifier]

[-hints_filtered {yes | no}]

[{-hostfile | -hfile} host_file_name]

[{-infolevel | -ilevel} message_level]

[-io_buffer_size buffer_size]

[-io_errlog {yes | no}]

[-ionodefile io_node_file_name]

[-instances number_of_instances]

[-labelio {yes | no}]

[-llfile loadleveler_job_command_file_name]

[-msg_api {MPI | LAPI | MPI_LAPI |MPI, LAPI | LAPI, MPI }]

[-msg_envelope_buf envelope_buffer_size][-newjob {yes | no}]

[-nodes number_of_nodes]

[-pgmmodel {spmd | mpmd}]

[-pmdlog {yes | no}]

[-polling_interval interval]

[-printenv {yes | no | script_name }]

[-procs partition_size]

[-pulse interval]

[-resd {yes | no}]

[-retransmit_interval interval]

[-retry retry_interval|wait] .

[-retrycount retry_count]

[-rexmit_buf_cnt number of buffers]

[-rexmit_buf_size buffer_size]

[-rmpool pool_ID]

[-savehostfile output_file_name]

[-save_llfile output_file_name]

poe

Appendix A. Parallel environment commands 107

|
|
|

|

[-shared_memory {yes | no}]

[-single_thread {no | yes}]

[-statistics {yes | no| print}]

[-stdinmode {all | none | task_ID}]

[-stdoutmode {unordered | ordered | task_ID}]

[-task_affinity {SNI | MCM | mcm_list}]

[-tasks_per_node number_of_tasks per node]

[-thread_stacksize stacksize]

[-udp_packet_size {packet_size}]

[-use_bulk_xfer yes | no]

[-wait_mode {nopoll |poll | sleep | yield}]

The poe command invokes the Parallel Operating Environment for loading and

executing programs on remote processor nodes. The operation of POE is influenced

by a number of POE environment variables. The flag options on this command are

each used to temporarily override one of these environment variables. User

program_options can be freely interspersed with the flag options. If no program is

specified, POE will either prompt you for programs to load, or, if the

MP_CMDFILE environment variable is set, will load the partition using the

specified commands file.

FLAGS

The -h flag, when used, must appear immediately after poe, and causes the poe

man page, if it exists, to be printed to stdout.

The remaining flags you can specify on this command are used to temporarily

override POE environment variables. For more information on valid values, and on

what a particular flag sets, refer to the description of its associated environment

variable in the ENVIRONMENT VARIABLES section. The following flags are

grouped by function.

The following Partition Manager control flags override the associated environment

variables.

-adapter_use

MP_ADAPTER_USE

-cpu_use

MP_CPU_USE

-euidevice

MP_EUIDEVICE

-euilib

MP_EUILIB

-euilibpath

MP_EUILIBPATH

-hostfile or -hfile

MP_HOSTFILE

-procs

MP_PROCS

-pulse

MP_PULSE

-resd

MP_RESD

-retry

MP_RETRY

-retrycount

MP_RETRYCOUNT

poe

108 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

-msg_api

MP_MSG_API

-rmpool

MP_RMPOOL

-nodes

MP_NODES

-tasks_per_node

MP_TASKS_PER_NODE

-savehostfile

MP_SAVEHOSTFILE

The following Job Specification flags override the associated environment variables.

-cmdfile

MP_CMDFILE

-instances

MP_INSTANCES

-llfile

MP_LLFILE

-newjob

MP_NEWJOB

-pgmmodel

MP_PGMMODEL

-save_llfile

MP_SAVE_LLFILE

-task_affinity

MP_TASK_AFFINITY

The following I/O Control flags override the associated environment variables.

-labelio

MP_LABELIO

-stdinmode

MP_STDINMODE

-stdoutmode

MP_STDOUTMODE

The following generation of diagnostic information flags override the associated

environment variables.

-infolevel or -ilevel

MP_INFOLEVEL

-pmdlog

MP_PMDLOG

-debug_notimeout

MP_DEBUG_NOTIMEOUT

The following Message Passing flags override the associated environment

variables.

-buffer_mem

MP_BUFFER_MEM

-cc_scratch_buf

MP_CC_SCRATCH_BUF

-clock_source

MP_CLOCK_SOURCE

-css_interrupt

MP_CSS_INTERRUPT

-eager_limit

MP_EAGER_LIMIT

poe

Appendix A. Parallel environment commands 109

|
|

-hints_filtered

MP_HINTS_FILTERED

-ionodefile

MP_IONODEFILE

-msg_envelope_buf

MP_MSG_ENVELOPE_BUF

-shared_memory

MP_SHARED_MEMORY

-udp_packet_size

MP_UDP_PACKET_SIZE

-thread_stacksize

MP_THREAD_STACKSIZE

-single_thread

MP_SINGLE_THREAD

-wait_mode

MP_WAIT_MODE

-polling_interval

MP_POLLING_INTERVAL

-retransmit_interval

MP_RETRANSMIT_INTERVAL

-statistics

MP_STATISTICS

-io_buffer_size

MP_IO_BUFFER_SIZE

-io_errlog

MP_IO_ERRLOG

-use_bulk_xfer

MP_USE_BULK_XFER

-bulk_min_msg_size

MP_BULK_MIN_MSG_SIZE

-rexmit_buf_size

MP_REXMIT_BUF_SIZE

-rexmit_buf_cnt

MP_REXMIT_BUF_CNT

The following corefile generation flags override the associated environment

variables.

-coredir

MP_COREDIR

-corefile_format

MP_COREFILE_FORMAT

-corefile_sigterm

MP_COREFILE_SIGTERM

The following are miscellaneous flags:

-euidevelop

MP_EUIDEVELOP

-printenv

MP_PRINTENV

-statistics

MP_STATISTICS

poe

110 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|

|
|
|
|

DESCRIPTION

The poe command invokes the Parallel Operating Environment for loading and

executing programs on remote nodes. You can enter it at your home node to:

v load and execute an SPMD program on all nodes of your partition.

v individually load the nodes of your partition with an MPMD job.

v load and execute a series of SPMD and MPMD programs, in individual job

steps, on the same partition.

v run nonparallel programs on remote nodes.

The operation of POE is influenced by a number of POE environment variables.

The flag options on this command are each used to temporarily override one of

these environment variables. User program_options can be freely interspersed with

the flag options, and additional_options not to be parsed by POE can be placed after

a fence_string defined by the MP_FENCE environment variable. If no program is

specified, POE will either prompt you for programs to load, or, if the

MP_CMDFILE environment variable is set, will load the partition using the

specified commands file.

The environment variables and flags that influence the operation of this command

fall into distinct categories of function. They are:

v Partition Manager control. The environment variables and flags in this category

determine the method of node allocation, message passing mechanism, and the

PULSE monitor function.

v Job specification. The environment variables and flags in this category

determine whether or not the Partition Manager should maintain the partition

for multiple job steps, whether commands should be read from a file or STDIN,

and how the partition should be loaded.

v I/O control. The environment variables and flags in this category determine how

I/O from the parallel tasks should be handled. These environment variables and

flags set the input and output modes, and determine whether or not output is

labeled by task id.

v Generation of diagnostic information. The environment variables and flags in

this category enable you to generate diagnostic information that may be required

by the IBM Support Center in resolving PE-related problems.

v Message Passing Interface. The environment variables and flags in this category

enable you to specify values for tuning message passing applications.

v Corefile generation. The environment variables and flags in this category

govern aspects of corefile generation including the directory name into which

corefiles will be saved, or the corefile format (standard AIX or lightweight).

v Miscellaneous. The additional environment variables and flags in this category

enable additional error checking, and set a dispatch priority class for execution.

ENVIRONMENT VARIABLES

The environment variable descriptions in this section are grouped by function.

The following environment variables are associated with Partition Manager control.

MP_ADAPTER_USE

Determines how the node’s adapter should be used. The US

communication subsystem library does not require dedicated use of the

high performance interconnect switch on the node. Adapter use will be

defaulted, as in Table 8 on page 19, but shared usage may be specified.

Valid values are dedicated and shared. If not set, the default is dedicated for

poe

Appendix A. Parallel environment commands 111

US jobs, or shared for IP jobs. The value of this environment variable can

be overridden using the -adapter_use flag.

MP_CPU_USE

Determines how the node’s CPUs should be used. The US communication

subsystem library does not require unique CPU use on the node. CPU use

will be defaulted, as in Table 8 on page 19, but multiple use may be

specified. Valid values are multiple and unique. If not set, the default is

unique for US jobs, or multiple for IP jobs. The value of this environment

variable can be overridden using the -cpu_use flag.

MP_EUIDEVICE

Determines the adapter set to use for message passing. Valid values are en0

(for Ethernet), fi0 (for FDDI), tr0 (for token-ring), css0 (for the pSeries High

Performance Switch feature and SP Switch2), csss (for the SP switch 2 high

performance adapter), sn_all, and sn_single for the pSeries High

Performance Switch.

MP_EUILIB

Determines the communication subsystem implementation to use for

communication either the IP communication subsystem or the US

communication subsystem. In order to use the US communication

subsystem, you must have a system configured with its high performance

switch feature. Valid, case-sensitive, values are ip (for the IP

communication subsystem) or us (for the US communication subsystem).

The value of this environment variable can be overridden using the -euilib

flag.

MP_EUILIBPATH

Determines the path to the message passing and communication subsystem

libraries. This only needs to be set if an alternate library path is desired.

Valid values are any path specifier. The value of this environment variable

can be overridden using the -euilibpath flag.

MP_HOSTFILE

Determines the name of a host list file for node allocation. Valid values are

any file specifier. If not set, the default is host.list in your current directory.

The value of this environment variable can be overridden using the

-hostfile or -hfile flags.

MP_PROCS

Determines the number of program tasks. Valid values are any number

from 1 to 8192. If not set, the default is 1. The value of this environment

variable can be overridden using the -procs flag.

MP_PULSE

The interval (in seconds) at which POE checks the remote nodes to ensure

that they are communicating with the home node. The default interval is

600 seconds (10 minutes). To disable the pulse function, specify an interval

of 0 (zero) seconds. The pulse function is automatically disabled when

running the pdbx debugger. You can override the value of this

environment variable with the -pulse flag.

MP_REMOTEDIR

Specifies the name of a script which echoes the name of the current

directory to be used on the remote nodes. By default, the current directory

is the current directory at the time that POE is run. You may need to

specify this if the AutoMount Daemon is used to mount user file systems,

and the user is not using the Korn shell.

poe

112 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|

The script mpamddir is provided for mapping the C shell directory name

to an AutoMount Daemon name.

MP_RESD

Determines whether or not the Partition Manager should connect to

LoadLeveler to allocate nodes. Valid values are either yes or no, and there

is no default. The value of this environment variable can be overridden

using the -resd flag.

MP_RETRY

The period of time (in seconds) between processor node allocation retries

by POE if there are not enough processor nodes immediately available to

run a program. This is valid only if you are using LoadLeveler. If the (case

insensitive) character string wait is specified instead of a number, no retries

are attempted by POE, and the job remains enqueued in LoadLeveler until

LoadLeveler either schedules the job or cancels it.

MP_RETRYCOUNT

The number of times (at the interval set by MP_RETRY) that the partition

manager should attempt to allocate processor nodes. This value is ignored

if MP_RETRY is set to the character string wait.

MP_MSG_API

To indicate to POE which message-passing API is being used by the

parallel tasks. MPI indicates to use MPI protocol only. LAPI indicates to

use LAPI protocol only. MPI_LAPI indicates that both protocols are used,

sharing the same set of communication resources (windows, IP addresses).

MPI, LAPI indicates that both protocols are used, with dedicated resources

assigned to each of them. LAPI, MPI has a meaning identical to MPI,

LAPI.

MP_RMPOOL

Determines the name or number of the pool that should be used for

nonspecific node allocation. This environment variable/command-line flag

only applies to LoadLeveler. Valid values are any identifying pool name or

number. There is no default. The value of this environment variable can be

overridden using the -rmpool flag.

MP_NODES

Specifies the number of physical nodes on which to run the parallel tasks.

It may be used alone or in conjunction with MP_TASKS_PER_NODE

and/or MP_PROCS, as described in Table 10 on page 26. The value of this

environment variable can be overridden using the -nodes flag.

MP_TASKS_PER_NODE

Specifies the number of tasks to be run on each of the physical nodes. It

may be used in conjunction with MP_NODES and/or MP_PROCS, as

described in Table 10 on page 26, but may not be used alone. The value of

this environment variable can be overridden using the -tasks_per_node

flag.

MP_SAVEHOSTFILE

The name of an output host list file to be generated by the Partition

Manager. Valid values are any relative or full path name. The value of this

environment variable can be overridden using the -savehostfile flag.

MP_TIMEOUT

Controls the length of time POE waits before abandoning an attempt to

connect to the remote nodes. The default is 150 seconds. MP_TIMEOUT

poe

Appendix A. Parallel environment commands 113

also changes the length of time the communication subsystem will wait for

a connection to be established during message passing initialization.

 If the SP security method is ″dce and compatibility″, you may need to

increase the MP_TIMEOUT value to allow POE to wait for the DCE

servers to respond (or timeout if the servers are down).

MP_CKPTDIR

Defines the directory where the checkpoint file will reside when

checkpointing a program. See “Checkpointing and restarting programs” on

page 44 for more information.

The following environment variables are associated with Job Specification.

MP_CMDFILE

Determines the name of a POE commands file used to load the nodes of

your partition. If set, POE will read the commands file rather than STDIN.

Valid values are any file specifier. The value of this environment variable

can be overridden using the -cmdfile flag.

MP_INSTANCES

The number of instances of User Space windows or IP addresses to be

assigned per task per protocol per network. This value is expressed as an

integer, or the string max. If the value specified exceeds the maximum

allowed number of instances, as determined by LoadLeveler, the true

maximum number determined is substituted.

MP_LLFILE

Determines the name of a LoadLeveler job command file for node

allocation. If you are performing specific node allocation, you can use a

LoadLeveler job command file in conjunction with a host list file. If you

do, the specific nodes listed in the host list file will be requested from

LoadLeveler. Valid values are any relative or full path name. The value of

this environment variable can be overridden using the -llfile environment

variable.

MP_NEWJOB

Determines whether or not the Partition Manager maintains your partition

for multiple job steps. Valid values are yes or no. If not set, the default is

no. The value of this environment variable can be overridden using the

-newjob flag.

MP_PGMMODEL

Determines the programming model you are using. Valid values are spmd

or mpmd. If not set, the default is spmd. The value of this environment

variable can be overridden using the -pgmmodel flag.

MP_SAVE_LLFILE

When using LoadLeveler for node allocation, the name of the output

LoadLeveler job command file to be generated by the Partition Manager.

The output LoadLeveler job command file will show the LoadLeveler

settings that result from the POE environment variables and/or

command-line options for the current invocation of POE. If you use the

MP_SAVE_LLFILE environment variable for a batch job, or when the

MP_LLFILE environment variable is set (indicating that a LoadLeveler job

command file should participate in node allocation), POE will show a

warning and will not save the output job command file. Valid values are

any relative or full path name. The value of this environment variable can

be overridden using the -save_llfile flag.

poe

114 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

MP_TASK_AFFINITY

Setting this environment variable causes the PMD to attach each task of a

parallel job to one of the system resource sets at the MCM level. This

constrains the task, and all its threads, to run within that MCM. If the task

has an inherited resource set, the attach honors the constraints of the

inherited resource set. The possible values are:

v MP_TASK_AFFINITY=MCM – the tasks are allocated in a round-robin

fashion among the MCM’s attached to the job by WLM. By default, the

tasks are allocated to all the MCMs in the node.

v MP_TASK_AFFINITY=SNI – the tasks are allocated to the MCM in

common with the first adapter assigned to the task by LoadLeveler. This

applies only to MPI jobs.

v MP_TASK_AFFINITY=mcm-list – tasks will be assigned on a

round-robin basis to this set, within the constraint of an inherited rset, if

any. ’mcm-list’ specifies a set of system level (LPAR) logical MCMs that

can be attached to. Any MCMs outside the constraint set will be

attempted, but will fail. If a single MCM number is specified as the list,

all tasks are assigned to that MCM. When a value of -1 is specified, no

affinity request will be made (effectively this disables task affinity).

The following environment variables are associated with I/O Control.

MP_LABELIO

Determines whether or not output from the parallel tasks are labeled by

task id. Valid values are yes or no. If not set, the default is no. The value

of this environment variable can be overridden using the -labelio flag.

MP_STDINMODE

– Determines the input mode how STDIN is managed for the parallel

tasks. Valid values are:

all all tasks receive the same input data from STDIN.

none no tasks receive input data from STDIN; STDIN will be used by

the home node only.

n STDIN is only sent to the task identified (n).

If not set, the default is all. The value of this environment variable can be

overridden using the -stdinmode flag.

MP_HOLD_STDIN

Determines whether or not sending of STDIN from the home node to the

remote nodes is deferred until the message passing partition has been

established. Valid values are yes or no. If not set, the default is no.

MP_STDOUTMODE

– Determines the output mode how STDOUT is handled by the parallel

tasks. Valid values are:

unordered

all tasks write output data to STDOUT asynchronously.

ordered

output data from each parallel task is written to its own buffer.

Later, all buffers are flushed, in task order, to STDOUT.

a task id

only the task indicated writes output data to STDOUT.

poe

Appendix A. Parallel environment commands 115

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

If not set, the default is unordered. The value of this environment variable

can be overridden using the -stdoutmode flag.

The following environment variables are associated with the generation of

diagnostic information.

MP_INFOLEVEL

Determines the level of message reporting. Valid values are:

0 error

1 warning and error

2 informational, warning, and error

3 informational, warning, and error. Also reports diagnostic messages

for use by the IBM Support Center.

4, 5, 6 Informational, warning, and error. Also reports high- and low-level

diagnostic messages for use by the IBM Support Center.

If not set, the default is 1 (warning and error). The value of this

environment variable can be overridden using the -infolevel or -ilevel flag.

MP_PMDLOG

Determines whether or not diagnostic messages should be logged to a file

in /tmp on each of the remote nodes. Typically, this environment

variable/command-line flag is only used under the direction of the IBM

Support Center in resolving a PE-related problem. Valid values are yes or

no. If not set, the default is no. The value of this environment variable can

be overridden using the -pmdlog flag.

MP_PRINTENV

Use this environment variable to activate generating a report on the

parallel environment setup for the MPI job at hand. The report is printed

to STDOUT. The printing of this report will have no adverse effect on the

performance of the MPI program. The value can also be a user-specified

script name, the output of which will be added to end of the normal

environment setup report.

 The allowable values for MP_PRINTENV are:

no Do not produce a report of environment variable settings. This is

the default value.

yes Produce a report of MPI environment variable settings. This report

is generated when MPI job initialization is complete.

script_name

Produce the report (same as yes), then append the output of the

script specified here.

MP_STATISTICS

Provides the ability to gather MPCI and LAPI communication statistics for

MPI user space jobs. Valid values are yes, no and print. If not set, the

default is no and the values are not case sensitive. The MPCI statistical

information can be used to get a summary on the network usage at the

end of the MPI job and to check the progress of inter-job message passing

during the execution of an MPI program. To get a summary of the network

usage, use print. A list of MPCI statistical information will be printed

when MPI_Finalize is called.To check the progress of inter-job message

passing, use yes and the MPCI functions ’mpci_statistics_write’ and

poe

116 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|
|
|

|

||
|

||
|

|
|
|

|

’mpci_statistics_zero’ have to be inserted strategically into the MPI

program. The ’mpci_statistics_write’ is for printing out the current counters

and the ’mpci_statistics_zero’ function is for zeroing the counters. These

function prototypes are:

int mpci_statistics_zero(void)

int mpci_statistics_write(FILE *fptr)

If ppe.poe is installed, these prototypes and a list of all MPCI statistical

variables, and their explanation can be found in:

/usr/lpp/ppe.poe/include/x_mpci_statistics.h.

Note: Activating MPCI statistics may have a slight impact on performance

of the MPI program.

MP_DEBUG_INITIAL_STOP

Determines the initial breakpoint in the application where pdbx will get

control. MP_DEBUG_INITIAL_STOP should be specified as

file_name:line_number. The line_number is the number of the line within the

source file file_name; where file_name has been compiled with -g. The line

number has to be one that defines executable code. In general, this is a line

of code for which the compiler generates machine level code. Another way

to view this is that the line number is one for which debuggers will accept

a breakpoint. Another valid string for MP_DEBUG_INITIAL_STOP would

be the function_name of the desired initial stopping point in the debugger.

If this variable is not specified, the default is to stop at the first executable

source line in the main routine. This environment variable has no

associated command-line flag.

MP_DEBUG_NOTIMEOUT

A debugging aid that allows programmers to attach to one or more of their

tasks without the concern that some other task may reach the LAPI

timeout. Such a timeout would normally occur if one of the job tasks was

continuing to run, and tried to communicate with a task to which the

programmer has attached using a debugger. With this flag set, LAPI will

never timeout and continue retransmitting message packets forever. The

default setting is false, allowing LAPI to timeout.

 The following environment variables are associated with the Message Passing

Interface.

MP_UDP_PACKET_SIZE

Allows the user to control the LAPI UDP datagram size. Specify a positive

integer.

MP_ACK_THRESH

Allows the user to control the LAPI packet acknowledgement threshold.

Specify a positive integer, no greater than 31. The default is 30.

MP_BUFFER_MEM

Specifies the size of the Early Arrival (EA) buffer that is used by the

communication subsystem to buffer eager send messages that arrive before

there is a matching receive posted. This value can also be specified with

the -buffer_mem command line flag. The command line flag will override

a value set with the environment variable.

 This environment variable can be used in one of two ways:

poe

Appendix A. Parallel environment commands 117

|
|

|
|
|
|
|

|

v Specify the size of a pre-allocated EA buffer and have PE/MPI guarantee

that no valid MPI application can require more EA buffer space than is

pre-allocated. For applications without very large tasks counts or with

modest memory demand per task, this form is almost always sufficient.

v Specify the size of a pre-allocated EA buffer and the maximum size that

PE/MPI will guarantee the buffer can never exceed. Aggressive use of

EA space is rare in real MPI applications but when task counts are large,

the need for PE/MPI to enforce an absolute guarantee may compromise

performance. Specifying a pre-allocated EA buffer that is big enough for

the application’s real needs but an upper bound that loosens

enforcement may provide better performance in some cases, but those

cases will not be common.

The default values for pre-allocated EA space are 64 MB when running

with User Space and 2.8 MB when running IP. To evaluate whether

overriding MP_BUFFER_MEM defaults for a particular application is

worthwhile, use MP_STATISTICS. This tells you whether there is

significantly more EA buffer space allocated than is used or whether EA

space limits are creating potential performance impacts by forcing some

messages that are smaller than the eager limit to use rendezvous protocol

because EA buffer cannot be guaranteed.

 The value of MP_BUFFER_MEM can be overridden with the -buffer_mem

command line flag.

 For more information about MP_BUFFER_MEM see “Using

MP_BUFFER_MEM” on page 52. For information about buffering eager

send messages, see IBM Parallel Environment for AIX: MPI Programming

Guide.

MP_CC_SCRATCH_BUF

Specifies whether MPI should always use the fastest collective

communication algorithm when there are alternatives, even if there is

greater scratch buffer required. In some cases, the faster algorithm needs to

allocate more scratch buffers and therefore, consumes more memory than a

slower algorithm. The default value is yes, which means that you want

MPI to choose an algorithm that has the shortest execution time, even

though it may consume extra memory. A value of no specifies that MPI

should choose the algorithm that uses less memory. Note that restricting

MPI to the algorithm that uses the least memory normally sacrifices

performance in exchange for that memory savings, so a value of no should

be specified only when limiting memory usage is critical.

 The value of MP_CC_SCRATCH_BUF can be overridden with the

-cc_scratch_buf command line flag.

MP_CLOCK_SOURCE

Determines whether or not to use the switch clock as a time source. Valid

values are AIX and switch. There is no default value. The value of this

environment variable can be overridden using the -clock_source flag.

MP_CSS_INTERRUPT

Determines whether or not arriving message packets cause interrupts. This

may provide better performance for certain applications. Valid values are

yes and no. If not set, the default is no.

poe

118 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

MP_EAGER_LIMIT

Changes the threshold value for message size, above which rendezvous

protocol is used.

 If the MP_EAGER_LIMIT environment variable is not set during

initialization, MPI automatically chooses a default eager limit value, based

on the number of tasks, as follows:

Number of

Tasks MP_EAGER_LIMIT

 1 to 256 32768

 257 to 512 16384

 513 to 1024 8192

1025 to 2048 4096

2049 to 4096 2048

4097 to 8192 1024

 Consider running a new application once with eager limit set to 0 (zero)

because this is useful for confirming that an application is safe, but

normally higher eager limit gives better performance. Note that a safe

application, as defined by the MPI standard, is one that does not depend

on some minimum of MPI buffer space to avoid deadlock.

 The maximum value for MP_EAGER_LIMIT is 256K (262144 bytes). Any

value that is less than 64 bytes but greater than zero bytes is automatically

increased to 64 bytes.

 For information about buffering eager send messages and eager limit, see

IBM Parallel Environment for AIX: MPI Programming Guide.

MP_HINTS_FILTERED

Determines whether MPI info objects reject hints (key/value pairs) which

are not meaningful to the MPI implementation. In filtered mode, an

MPI_INFO_SET call which provides a key/value pair that the

implementation does not understand will behave as a no-op. A subsequent

MPI_INFO_GET call will find that the hint does not exist in the info

object.

 In unfiltered mode, any key/value pair is stored and may be retrieved.

Applications which wish to use MPI info objects to cache and retrieve

key/value pairs other than those actually understood by the MPI

implementation must use unfiltered mode. The option has no effect on the

way MPI uses the hints it does understand. In unfiltered mode, there is no

way for a program to discover which hints are valid to MPI and which are

simply being carried as uninterpreted key/value pairs.

 Providing an unrecognized hint is not an error in either mode.

 Valid values for this environment variable are yes and no. If set to yes,

unrecognized hints are be filtered. If set to no, they will not. If this

environment variable is not set, the default is yes. The value of this

environment variable can be overridden using the -hints_filtered

command-line flag.

MP_IONODEFILE

The name of a parallel I/O node file — a text file that lists the nodes that

should be handling parallel I/O. This enables you to limit the number of

nodes that participate in parallel I/O, guarantee that all I/O operations are

performed on the same node, and so on. Valid values are any relative or

poe

Appendix A. Parallel environment commands 119

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

full path name. If not specified, all nodes will participate in parallel I/O

operations. The value of this environment variable can be overridden using

the -ionodefile command-line flag.

MP_MSG_ENVELOPE_BUF

Changes the size of the message envelope buffer. You can specify any

positive number. There is no upper limit, but any value less than 1 MB is

ignored. MPI pre-allocates the message envelope buffer with a default size

of 8 MB. The MPI statistics function prints out the message envelope buffer

usage which you can use to determine the best envelope buffer size for a

particular MPI program.

 The envelope buffer is used for storing both send and receive descriptors.

An MPI_Isend or unmatched MPI_Irecv posting creates a descriptor that

lives until the MPI_Wait completes. When a message arrives and finds no

match, an early arrival descriptor is created that lives until a matching

receive is posted and that receive completes. For any message at the

destination, there will be only one descriptor, either the one created at the

receive call or the one created at the early arrival. The more uncompleted

MPI_Irecv and MPI_Isend operations an application maintains, the higher

the envelope buffer requirement. Most applications will have no reason to

adjust the size of this buffer.

 The value of MP_MSG_ENVELOPE_BUF can be overridden with the

-msg_envelope_buf command line flag.

MP_POLLING_INTERVAL

Changes the polling interval, in microseconds. This is expressed as an

integer between 1 and 2 billion, with defaults of 400000 (US) and 180000

(IP).

MP_RETRANSMIT_INTERVAL

Controls how often the communication subsystem library checks to see if it

should retransmit packets that have not been acknowledged. This value is

the number of polling loops between checks. The acceptable range is 1000

to INT_MAX. The default is 10000 for UDP and 400000 for User Space.

MP_LAPI_TRACE_LEVEL

Used in conjunction with AIX tracing for debug purposes. Levels 0-6 are

supported.

MP_SHARED_MEMORY

To specify the use of shared memory (instead of the network) for message

passing between tasks running on the same node. The default value is yes.

Note: In past releases, the MP_SHM_CC environment variable was used

to enable or disable the use of shared memory for certain 64-bit MPI

collective communication operations. Beginning with the PE 4.2

release, this environment variable has been removed. You should

now use MP_SHARED_MEMORY to enable shared memory for

both collective communication and point-to-point routines. The

default setting for MP_SHARED_MEMORY is yes (enable shared

memory).

MP_USE_BULK_XFER

Exploit the high performance switch bulk data transfer mechanism. This

variable does not have any meaning and is ignored in other environments.

poe

120 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

Before you can use MP_USE_BULK_XFER, the system administrator must

first enable Remote Direct Memory Access (RDMA). For more information,

see IBM Parallel Environment for AIX: Installation.

 Valid values are yes and no. If not set, the default is no.

 Note that when you use MP_USE_BULK_XFER, you also need to consider

the value of the MP_BULK_MIN_MSG_SIZE environment variable.

Messages with data lengths that are greater than the value specified for

MP_BULK_MIN_MSG_SIZE will use the bulk transfer path, if it is

available. See the description of MP_BULK_MIN_MSG_SIZE for more

information.

MP_BULK_MIN_MSG_SIZE

Set the minimum message length for bulk transfer. Contiguous messages

with data lengths greater than or equal to the value you specify for this

environment variable will use the bulk transfer path, if it is available.

Messages with data lengths that are smaller than the value you specify for

this environment variable, or are noncontiguous, will use packet mode

transfer.

 The valid range of values is from 4096 to 2147483647 (INT_MAX). Do not

specify K, M, or G with this value; these designations are not supported.

The default value is 153600.

MP_THREAD_STACKSIZE

Determines the additional stacksize allocated for user programs executing

on an MPI service thread. If you allocate insufficient space, the program

may encounter a SIGSEGV exception.

MP_SINGLE_THREAD

Avoids mutex lock overheads in a single threaded user program. This is an

optimization flag, with values of no and yes. The default value is no,

which means the potential for multiple user message passing threads are

assumed.

Note: MPI-IO and MPI-1SC (MPI One Sided Communication) cannot be used

when MP_SINGLE_THREAD is set to yes. An application that tries to use

nonstandard MPE_I nonblocking collective communications, MPI-IO, or

MPI-1SC with MP_SINGLE_THREAD=yes will be terminated. MPI calls

from multiple user threads cannot be detected and will lead to unpredictable

results.

MP_WAIT_MODE

To specify how a thread or task behaves when it discovers it is blocked,

waiting for a message to arrive.

MP_POLLING_INTERVAL

Defines the polling interval in microseconds. The maximum interval is

approximately 2 billion microseconds (2000 seconds). The default is 180000

microseconds for IP, and 400000 microseconds for US.

MP_RETRANSMIT_INTERVAL

MP_RETRANSMIT_INTERVAL=nnnnn and its command line equivalent,

-retransmit_interval=nnnnn, control how often the communication

subsystem library checks to see if it should retransmit packets that have

not been acknowledged. The value nnnnn is the number of polling loops

between checks. The acceptable range is 1000 to 400000. The default is

10000 for UDP and 400000 for User Space.

poe

Appendix A. Parallel environment commands 121

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

MP_IO_BUFFER_SIZE

Indicates the default size of the data buffer used by MPI-IO agents. For

example:

export MP_IO_BUFFER_SIZE=16M

sets the default size of the MPI-IO data buffer to 16MB. The default value

of the environment variable is the number of bytes corresponding to 16 file

blocks. This value depends on the block size associated with the file

system storing the file. Valid values are any positive size up to 128MB. The

size can be expressed as a number of bytes, as a number of KB (1024

bytes), using the letter k as a suffix, or as a number of MB (1024 * 1024

bytes), using the letter m as a suffix.

MP_IO_ERRLOG

Indicates whether to turn on error logging for I/O operations. For

example:

export MP_IO_ERRLOG=yes

turns on error logging. When an error occurs, a line of information will be

logged into file /tmp/mpi_io_errdump.app_name.userid.taskid, recording the

time the error occurs, the POSIX file system call involved, the file

descriptor, and the returned error number.

MP_REXMIT_BUF_SIZE

The maximum message size which LAPI will store in its local buffers so as

to more quickly free up the user buffer containing message data. This size

indicates the size of the local buffers LAPI will allocate to store such

messages, and will impact memory usage, while potentially improving

performance. Messages larger than this size will continue to be transmitted

by LAPI; the only difference is that user buffers will not become available

for the user to reuse until the message data has been acknowledged as

received by the target. The default user message size is 16352 bytes.

MP_REXMIT_BUF_CNT

The number of buffers that LAPI must allocate for each target job, each

buffer being of the size defined by MP_REXMIT_BUF_SIZE *

MP_REXMIT_BUF_CNT. This count indicates the number of in-flight

messages that LAPI can store in its local buffers so as to free up the user’s

message buffers. If there are no more message buffers left, LAPI will still

continue transmission of messages; the only difference is that user buffers

will not become available for the user to reuse until the message data has

been acknowledged as received by the target. The default number of

buffers is 128.

The following are corefile generation environment variables:

MP_COREDIR

Creates a separate directory for each task’s core file. The value of this

environment variable can be overridden using the -coredir flag. A value of

″none″ signifies to bypass creating a new directory resulting in core files

written to /tmp.

MP_COREFILE_FORMAT

Determines the format of corefiles generated when processes terminate

abnormally. If not set, POE will generate standard AIX corefiles. If set to

the string ″STDERR″, output will go to standard error. If set to any other

string, POE will generate a lightweight corefile (conforming to the Parallel

Tool consortium’s Standardized Lightweight Corefile Format) for each

poe

122 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

process in your partition. The string you specify is the name you want to

assign to each lightweight corefile. By default, these lightweight corefiles

will be saved to subdirectories prefixed by the string coredir and suffixed

by the task id (as in coredir.0, coredir.1, and so on). You can specify a prefix

other than the default coredir by setting the MP_COREDIR environment

variable. The value of this environment variable can be overridden using

the -corefile_format flag.

MP_COREFILE_SIGTERM

Determines if POE should generate a corefile when a SIGTERM signal is

received. Valid values are yes and no. If not set, the default is no.

The following are miscellaneous environment variables:

MP_EUIDEVELOP

Determines whether PE MPI performs less, normal, or more detailed

checking during execution. The additional checking is intended for

developing applications, and can significantly slow performance. Valid

values are yes or no, deb (for “debug”), nor (for “normal”), and min (for

“minimum”). The min value shuts off some parameter checking and may

improve performance, but should be used only with applications that are

very well-validated. If not set, the default is no. The value of this

environment variable can be overridden using the -euidevelop flag.

MP_FENCE

Determines a fence_string to be used for separating options you want

parsed by POE from those you do not. Valid values are any string, and

there is no default. Once set, you can then use the fence_string followed by

additional_options on the poe command line. The additional_options will not

be parsed by POE. This environment variable has no associated

command-line flag.

MP_NOARGLIST

Determines whether or not POE ignores the argument list. Valid values are

yes and no. If set to yes, POE will not attempt to remove POE

command-line flags before passing the argument list to the user’s program.

This environment variable has no associated command-line flag.

MP_PRIORITY

Determines a co-scheduler dispatch parameter set for execution. See

“Improving Application Scalability Performance” on page 77for more

information on co-scheduler parameters. Valid values are any of the

dispatch priority classes set up by the system administrator in the file

/etc/poe.priority, or a string of threshold values, as controlled by the

/etc/poe.priority file contents. This environment variable has no associated

command-line flag.

EXAMPLES

1. Assume the MP_PGMMODEL environment variable is set to spmd, and

MP_PROCS is set to 6. To load and execute the SPMD program sample on the

six remote nodes of your partition, enter:

poe sample

2. Assume you have an MPMD application consisting of two programs – master

and workers. These programs are designed to run together and communicate via

calls to message passing subroutines. The program master is designed to run on

one processor node. The workers program is designed to run as separate tasks

on any number of other nodes. The MP_PGMMODEL environment variable is

poe

Appendix A. Parallel environment commands 123

|
|

|
|
|

|
|
|
|
|
|
|

set to mpmd, and MP_PROCS is set to 6. To individually load the six remote

nodes with your MPMD application, enter:

poe

Once the partition is established, the poe command responds with the prompt:

0:host1_name>

To load the master program as task 0 on host1_name, enter:

master

The poe command responds with a prompt for the next node to load. When

you have loaded the last node of your partition, the poe command displays the

message Partition loaded... and begins execution.

3. Assume you want to run three SPMD programs – setup, computation, and

cleanup – as job steps on the same partition of nodes. The MP_PGMMODEL

environment variable is set to spmd, and MP_NEWJOB is set to yes. You enter:

poe

Once the partition is established, the poe command responds with the prompt:

Enter program name (or quit):

To load the program setup, enter:

setup

The program setup executes on all nodes of your partition. When execution

completes, the poe command again prompts you for a program name. Enter the

program names in turn. To release the partition, enter:

quit

4. To check the process status (using the nonparallel command ps) for all remote

nodes in your partition, enter:

poe ps

FILES

host.list (Default host list file)

RELATED INFORMATION

Commands: mpcc_r(1), , mpCC_r(1), mpxlf_r(1), pdbx(1)

poe

124 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

poeckpt

NAME

poeckpt –takes a checkpoint of an interactive, non-LoadLeveler POE job.

SYNOPSIS

poeckpt [-?] [-h] [-k] [-u username] <pid>

FLAGS

-? Provides a short usage message.

-h Provides help information.

-k Specifies that the job is to be terminated after a successful checkpoint.

-u Specifies the owner of the resulting checkpoint file (used only when root

invokes the poeckpt command).

<pid>

The process id of the POE process for the job to be checkpointed.

DESCRIPTION

poeckpt will checkpoint an interactive POE job, ensuring that job is a

non-LoadLeveler POE job, running stand-alone. The process id specified

corresponds to the POE process id for the job to be checkpointed. If the process

specified is not a POE process or if a POE job is running under LoadLeveler, the

command will fail. If the terminate option is specified and the POE job cannot be

checkpointed, the terminate option is ignored and the POE job continues to run.

The poeckpt command will block until the checkpoint operation completes.

Interrupting this command by pressing Ctrl-c will cause the checkpoint to be

aborted.

This command must be run as the user who owns the specified process or as root.

When the -u flag is specified and the process is being run by root, poeckpt will

change the ownership of the checkpoint files to the user name specified. The -u

flag is ignored when poeckpt is run by a non-root user.

Return codes are:

0 if successful

-1 if unsuccessful; with error message(s) containing reasons for failure.

Note: For checkpoint failures, the primary errors reported are actual error numbers

as documented in /usr/include/sys/errno.h. The secondary errors provide

additional error information and are documented in

/usr/include/sys/chkerror.h. There may also be further error information

reported in string format as “error data”.

ENVIRONMENT VARIABLES

This command responds to the following environment variables:

poeckpt

Appendix A. Parallel environment commands 125

MP_CKPTDIR

defines the directory where the checkpoint file created by poeckpt will

reside. If unset, the default value is the directory from which poeckpt is

run. If the value of MP_CKPTDIR that is specified in the environment

where poeckpt is invoked is not the same as the value of MP_CKPTDIR in

the environment of the POE job being checkpointed, the checkpoint file of

POE may appear in a different directory than the task checkpoint files.

MP_CKPTFILE

defines the base name of the checkpoint file created by poeckpt. If unset,

the default value is poeckpt.<PID>, where PID is the process ID of the

POE process being checkpointed. If the value of MP_CKPTFILE that is

specified in the environment where poeckpt is invoked is not the same as

the value of MP_CKPTFILE in the environment of the POE job being

checkpointed, the base name of the POE checkpoint file may be different

than the base name of the task checkpoint files.

poeckpt

126 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

poekill

NAME

poekill – terminates all remote tasks for a given program.

SYNOPSIS

poe poekill pgm_name [poe_options]

or

rsh remote_node poekill pgm_name

poekill is a Korn shell script that searches for the existence of running programs

(named pgm_name) owned by the user, and terminates them via SIGTERM

signals. If run under POE, poekill uses the standard POE mechanism for

identifying the set of remote nodes (host.list, LoadLeveler, and so on). If run under

rsh, poekill applies only to the node specified as remote_node.

FLAGS

When run as a POE program, standard POE flags apply.

DESCRIPTION

poekill determines the user id of the user that submitted the command. It then

uses the id to obtain a list of active processes, which is filtered by the pgm_name

argument into a scratch file in /tmp. The file is processed by an awk script that

sends a SIGTERM signal (15) to each process in the list, and echoes the action back

to the user. The scratch file is then erased, and the script exits with code of 0.

If you do not provide a pgm_name, an error message is printed and the script exits

with a code of 1.

The pgm_name can be a substring of the program name.

RELATED INFORMATION

Commands: rsh(1), poe(1), kill(1)

poekill

Appendix A. Parallel environment commands 127

poerestart

NAME

poerestart – is a command that can be used to restart an interactive POE job.

SYNOPSIS

poerestart [-?] [-h] [-s] <file>

FLAGS

-? Provides a short usage message.

-h Provides extended help information.

-s Specifies that the same hosts should be used for the restarted job as were used

for the job that was checkpointed.

<file>

The checkpoint file for the POE process.

DESCRIPTION

poerestart will restart a previously checkpointed interactive POE job, from the

checkpoint file specified. Only an interactive job, stand-alone or running under

LoadLeveler, can be restarted. A batch POE job cannot be restarted with this

command.

Interrupting the poerestart command by pressing Ctrl-c will cause the restart

operation to be aborted.

This command must be run as the user who owned the original checkpointed

process.

ENVIRONMENT VARIABLES

This command responds to the following environment variables:

MP_HOSTFILE

specifies the name of the hostfile to be used. This setting is ignored if the

-s flag is specified.

MP_RMPOOL

specifies the name of the LoadLeveler pool from which nodes will be

selected to restart the job. It is an error to use this specification if the

originally checkpointed POE job was not being run under LoadLeveler.

This setting is ignored if:

v The -s flag is specified.

v MP_HOSTFILE is set.

v A host.list file exists in the directory from which the command is run.

v MP_LLFILE is set.

MP_LLFILE

specifies the name of the LoadLeveler job command file to be used for

specification of the restarted job. This must be specified if the originally

checkpointed POE job used the -llfile command-line option or the

MP_LLFILE environment variable for job specification. This cannot be

poerestart

128 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

used if the originally checkpointed POE job did not use the -llfile

command-line option or the MP_LLFILE environment variable for job

specification.

NOTES

1. When restarting a non-LoadLeveler job, or a LoadLeveler job that does not use

MP_RMPOOL or MP_LLFILE, the hosts will be determined using the

following:

v The -s flag.

v The MP_HOSTFILE environment variable.

v A host.list file.
2. When MP_LLFILE is not being used, one of the following must be true:

v The -s flag is specified.

v The MP_HOSTFILE environment variable is set.

v A host.list file exists in the directory from which the command is being run.

v The MP_RMPOOL environment variable is set.
3. The following may be used in conjunction with the MP_LLFILE environment

variable:

v The -s flag.

v The MP_HOSTFILE environment variable.

v A host.list file in the directory from which the command is being run.
4. Any POE environment variables other than those indicated above are not used

by the restarted POE.

5. The task geometry (tasks that are common within a node) for the restarted task

must be the same as the originally started task.

6. This command may not be used to restart from a checkpoint file of a POE

batch job. If the file provided to the poerestart command was generated from

the checkpoint of a batch POE job, the poerestart command will return with no

error message printed. The #@error file specified in the original batch job (if

present) will contain a message indicating that this error occurred.

Return codes are:

0 if successful

-1 if unsuccessful; with error messages containing reasons for failure.

poerestart

Appendix A. Parallel environment commands 129

poerestart

130 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Appendix B. POE environment variables and command-line

flags

This section contains tables which summarize the environment variables and

command-line flags discussed throughout this book. You can set these variables

and flags to influence the execution of parallel programs, and the operation of

certain tools. The command-line flags temporarily override their associated

environment variable. The tables divide the environment variables and flags by

function:

v Table 12 on page 132 summarizes the environment variables and flags for

controlling the Partition Manager. These environment variables and flags enable

you to specify such things as an input or output host list file, and the method of

node allocation. For a complete description of the variables and flags

summarized in this table, see Chapter 2, “Executing parallel programs,” on page

7.

v Table 13 on page 135 summarizes the environment variables and flags for Job

Specifications. These environment variables and flags determine whether or not

the Partition Manager should maintain the partition for multiple job steps,

whether commands should be read from a file or STDIN, and how the partition

should be loaded. For a complete description of the variables and flags

summarized in this table, see Chapter 2, “Executing parallel programs,” on page

7.

v Table 14 on page 136 summarizes the environment variables and flags for

determining how I/O from the parallel tasks should be handled. These

environment variables and flags set the input and output modes, and determine

whether or not output is labeled by task id. For a complete description of the

variables and flags summarized in this table, see “Managing standard input,

output, and error” on page 37.

v Table 15 on page 138 summarizes the environment variables and flags for

collecting diagnostic information. These environment variables and flags enable

you to generate diagnostic information that may be required by the IBM Support

Center in resolving PE-related problems.

v Table 16 on page 138 summarizes the environment variables and flags for the

Message Passing Interface. These environment variables and flags allow you to

change message and memory sizes, as well as other message passing

information.

v Table 17 on page 145 summarizes the variables and flags for core file generation.

v Table 18 on page 145 summarizes some miscellaneous environment variables and

flags. These environment variables and flags provide control for the Program

Marker Array, enable additional error checking, and let you set a dispatch

priority class for execution.

You can use the POE command-line flags on the poe and pdbx commands. You

can also use the following flags on program names when individually loading

nodes from STDIN or a POE commands file.

v -infolevel or -ilevel

v -euidevelop

In the tables that follow, a check mark (U) denotes those flags you can use when

individually loading nodes.For more information on individually loading nodes,

refer to “Invoking an MPMD program” on page 29.

© Copyright IBM Corp. 1993, 2005 131

Table 12. POE environment variables and command-line flags for partition manager control

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_ADAPTER_USE

-adapter_use

How the node’s adapter should be used.

The User Space communication

subsystem library does not require

dedicated use of the high performance

switch on the node. Adapter use will be

defaulted, as in Table 8 on page 19, but

shared usage may be specified.

One of the following

strings:

dedicated

Only a single

program task can

use the adapter.

shared A number of tasks

on the node can

use the adapter.

Dedicated for

User Space jobs,

shared for IP jobs.

MP_CPU_USE

-cpu_use

How the node’s CPU should be used.

The User Space communication

subsystem library does not require

unique CPU use on the node. CPU use

will be defaulted, as in Table 8 on page

19, but multiple use may be specified.

For example, either one job per node gets

all CPUs, or more than one job can go on

a node.

One of the following

strings:

unique Only your

program’s tasks

can use the CPU.

multiple

Your program may

share the node

with other users.

Unique for User

Space jobs,

multiple for IP

jobs.

MP_EUIDEVICE

-euidevice

The adapter set to use for message

passing – either Ethernet, FDDI,

token-ring, the IBM RS/6000 SP’s high

performance switch adapter, the SP

switch 2, or the pSeries High

Performance Switch.

One of the following

strings:

en0 Ethernet

fi0 FDDI

tr0 token-ring

css0 high performance

switch

csss SP switch 2

sn_all

sn_single

ml0

The adapter set

used as the

external network

address.

MP_EUILIB

-euilib

The communication subsystem

implementation to use for communication

– either the IP communication subsystem

or the User Space communication

subsystem.

One of the following

strings:

ip The IP

communication

subsystem.

us The User Space

communication

subsystem.
Note: This specification is

case-sensitive.

ip

MP_EUILIBPATH

-euilibpath

The path to the message passing and

communication subsystem libraries. This

only needs to be set if the libraries are

moved, or an alternate set is being used.

Any path specifier. /usr/lpp/ppe.poe/lib

132 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|

|
|
|
|
|

Table 12. POE environment variables and command-line flags for partition manager control (continued)

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_HOSTFILE

-hostfile -hfile

The name of a host list file for node

allocation.

Any file specifier or the

word NULL.

host.list in the

current directory.

MP_INSTANCES

-instances

The number of instances of User Space

windows or IP addresses to be assigned.

This value is expressed as an integer, or

the string max. If the values specified

exceeds the maximum allowed number of

instances, as determined by LoadLeveler,

that number is substituted.

A positive integer, or the

string max.

1

MP_PROCS

-procs

The number of program tasks. Any number from 1 to the

maximum supported

configuration.

1

MP_PULSE

-pulse

The interval (in seconds) at which POE

checks the remote nodes to ensure that

they are actively communicating with the

home node.

Note: Pulse is ignored for pdbx.

An integer greater than or

equal to 0.

600

MP_RESD

-resd

Whether or not the Partition Manager

should connect to LoadLeveler to allocate

nodes.

Note: When running POE from a

workstation that is external to the

LoadLeveler cluster, the LoadL.so fileset

must be installed on the external node

(see Using and Administering LoadLeveler

and IBM Parallel Environment for AIX:

Installation for more information).

yes no Context

dependent

MP_RETRY

-retry

The period of time (in seconds) between

processor node allocation retries by POE

if there are not enough processor nodes

immediately available to run a program.

This is valid only if you are using

LoadLeveler. If the character string wait

is specified instead of a number, no

retries are attempted by POE, and the job

remains enqueued in LoadLeveler until

LoadLeveler either schedules the job or

cancels it.

An integer greater than or

equal to 0, or the

case-insensitive value wait.

0 (no retry)

MP_RETRYCOUNT

-retrycount

The number of times (at the interval set

by MP_RETRY) that the partition

manager should attempt to allocate

processor nodes. This value is ignored if

MP_RETRY is set to the character string

wait.

An integer greater than or

equal to 0.

0

Appendix B. POE environment variables and command-line flags 133

Table 12. POE environment variables and command-line flags for partition manager control (continued)

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_MSG_API

-msg_api

To indicate to POE which message

passing API is being used by the

application code.

MPI

Indicates that the application makes

only MPI calls.

LAPI

Indicates that the application makes

only LAPI calls.

MPI_LAPI

Indicates that calls to both message

passing APIs are used in the

application, and the same set of

communication resources (windows,

IP addresses) is to be shared between

them.

MPI,LAPI

Indicates that calls to both message

passing APIs are used in the

application, with dedicated resources

assigned to each of them.

LAPI,MPI

Has a meaning identical to MPI,LAPI.

MPI

LAPI

MPI_LAPI

MPI,LAPI

LAPI,MPI

MPI

MP_RMPOOL

-rmpool

The name or number of the pool that

should be used for nonspecific node

allocation. This environment

variable/command-line flag only applies

to LoadLeveler.

An identifying pool name

or number.

None

MP_NODES

-nodes

To specify the number of processor nodes

on which to run the parallel tasks. It may

be used alone or in conjunction with

MP_TASKS_PER_NODE and/or

MP_PROCS, as described in Table 10 on

page 26.

Any number from 1 to the

maximum supported

configuration.

None

MP_TASKS_PER_

NODE

-tasks_per_node

To specify the number of tasks to be run

on each of the physical nodes. It may be

used in conjunction with MP_NODES

and/or MP_PROCS, as described in

Table 10 on page 26, but may not be used

alone.

Any number from 1 to the

maximum supported

configuration.

None

MP_SAVEHOSTFILE

-savehostfile

The name of an output host list file to be

generated by the Partition Manager.

Any relative or full path

name.

None

MP_REMOTEDIR

(no associated

command line flag)

The name of a script which echoes the

name of the current directory to be used

on the remote nodes.

Any file specifier. None

MP_TIMEOUT

(no associated

command line flag)

The length of time that POE waits before

abandoning an attempt to connect to the

remote nodes.

Any number greater than 0.

If set to 0 or a negative

number, the value is

ignored.

150 seconds

134 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

Table 12. POE environment variables and command-line flags for partition manager control (continued)

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_CKPTFILE

(no associated

command line flag)

The base name of the checkpoint file. Any file specifier. See

“Checkpointing

and restarting

programs” on

page 44

MP_CKPTDIR

(no associated

command line flag)

The directory where the checkpoint file

will reside.

Any path specifier. Directory from

which POE is run.

 Table 13. POE environment variables/command-line flags for job specification

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_CMDFILE

-cmdfile

The name of a POE commands file used

to load the nodes of your partition. If set,

POE will read the commands file rather

than STDIN.

Any file specifier. None

MP_LLFILE

-llfile

The name of a LoadLeveler job command

file for node allocation. If you are

performing specific node allocation, you

can use a LoadLeveler job command file

in conjunction with a host list file. If you

do, the specific nodes listed in the host

list file will be requested from

LoadLeveler.

Any path specifier. None

MP_NEWJOB

-newjob

Whether or not the Partition Manager

maintains your partition for multiple job

steps.

yes no no

MP_PGMMODEL

-pgmmodel

The programming model you are using. spmd mpmd spmd

MP_SAVE_LLFILE

-save_llfile

When using LoadLeveler for node

allocation, the name of the output

LoadLeveler job command file to be

generated by the Partition Manager. The

output LoadLeveler job command file

will show the LoadLeveler settings that

result from the POE environment

variables and/or command-line options

for the current invocation of POE. If you

use the MP_SAVE_LLFILE environment

variable for a batch job, or when the

MP_LLFILE environment variable is set

(indicating that a LoadLeveler job

command file should participate in node

allocation), POE will show a warning and

will not save the output job command

file.

Any relative or full path

name.

None

Appendix B. POE environment variables and command-line flags 135

Table 13. POE environment variables/command-line flags for job specification (continued)

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_TASK_AFFINITY

-task_affinity

This causes the PMD to attach each task

of a parallel job to one of the system

resource sets (rsets) at the MCM level,

thus constraining the task (and all its

threads) to run within that MCM. If the

task has an inherited resource set, the

attach honors the constraints of the

inherited resource set.

It is recommended that the user also set

the AIX environment variable

MEMORY_AFFINITY to MCM.

SNI Specifies that the

PMD select the

MCM to which the

first adapter

window is

attached.

MCM Specifies that the

PMD assigns tasks

on a round-robin

basis to the MCMs

in the inherited

resource set. If

WLM is not being

used, this is most

useful when a

node is being used

for only one job.

-1 Specifies that no

affinity request is

to be made.

mcm_list

Specifies a set of

system level

(LPAR) logical

MCMs that can be

attached to. Tasks

of this job will be

assigned

round-robin to this

set, within the

constraint of an

inherited rset, if

any. Any MCMs

outside the

constraint set will

be attempted, but

fail.

None

 Table 14. POE environment variables/command-line flags for I/O control

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_LABELIO

-labelio

Whether or not output from the parallel

tasks is labeled by task id.

yes no no (yes for pdbx)

136 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|

|

|
|
|
|
|
|
|
|

|
|
|

||
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 14. POE environment variables/command-line flags for I/O control (continued)

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_STDINMODE

-stdinmode

The input mode. This determines how

input is managed for the parallel tasks.

all All tasks receive

the same input

data from STDIN.

none No tasks receive

input data from

STDIN; STDIN

will be used by the

home node only.

a task id

STDIN is only sent

to the task

identified.

all

MP_HOLD_STDIN

(no associated

command line flag)

Whether or not sending of STDIN from

the home node to the remote nodes is

deferred until the message passing

partition has been established.

yes no no

MP_STDOUTMODE

-stdoutmode

The output mode. This determines how

STDOUT is handled by the parallel tasks.

One of the following:

unordered

All tasks write

output data to

STDOUT

asynchronously.

ordered Output data from

each parallel task

is written to its

own buffer. Later,

all buffers are

flushed, in task

order, to STDOUT.

a task id

Only the task

indicated writes

output data to

STDOUT.

unordered

Appendix B. POE environment variables and command-line flags 137

Table 15. POE environment variables/command-line flags for diagnostic information

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_INFOLEVEL

-infolevel U -ilevel U

The level of message reporting. One of the following

integers:

0 Error

1 Warning and error

2 Informational,

warning, and error

3 Informational,

warning, and

error. Also reports

high-level

diagnostic

messages for use

by the IBM

Support Center.

4, 5, 6 Informational,

warning, and

error. Also reports

high- and

low-level

diagnostic

messages for use

by the IBM

Support Center.

1

MP_PMDLOG

-pmdlog

Whether or not diagnostic messages

should be logged to a file in /tmp on each

of the remote nodes. Typically, this

environment variable/command-line flag

is only used under the direction of the

IBM Support Center in resolving a

PE-related problem.

yes no no

MP_DEBUG_INITIAL_

STOP

(no associated

command-line flag)

The initial breakpoint in the application

where pdbx will get control.

One of the following:

 “filename”:line_number

 function_name

The first

executable source

line in the main

routine.

MP_DEBUG_

NOTIMEOUT

-debug_notimeout

A debugging aid that allows

programmers to attach to one or more of

their tasks without the concern that some

other task may reach a timeout.

Any non-null string will

activate this flag.

no

 Table 16. POE environment variables and command-line flags for Message Passing Interface (MPI)

Environment Variable

Command-Line Flag Set: Possible Values: Default:

MP_ACK_THRESH

-ack_thresh

Allows the user to control the

packet acknowledgement

threshold. Specify a positive

integer.

A positive integer limited to 31 30

138 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|

|
|
|
|

Table 16. POE environment variables and command-line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command-Line Flag Set: Possible Values: Default:

MP_BUFFER_MEM

-buffer_mem

See “MP_BUFFER_MEM details” on page 144. 64 MB

(User Space)

2800000 bytes

(IP)

MP_CC_SCRATCH_BUF

-cc_scratch_buf

Use the fastest collective

communication algorithm even

if that algorithm requires

allocation of more scratch

buffer space.

yes

no

yes

MP_CLOCK_SOURCE

-clock_source

To use the high performance

switch clock as a time source.

See IBM Parallel Environment for

AIX: MPI Programming Guide.

AIX

SWITCH

None. . See

IBM Parallel

Environment for

AIX: MPI

Programming

Guide , the table

entitled: How

the clock source

is determined for

more

information.

MP_CSS_INTERRUPT

-css_interrupt

To specify whether or not

arriving packets generate

interrupts. Using this

environment variable may

provide better performance for

certain applications. Setting this

variable explicitly will suppress

the MPI-directed switching of

interrupt mode, leaving the

user in control for the rest of

the run. For more information,

see MPI_FILE_OPEN in IBM

Parallel Environment for AIX:

MPI Subroutine Reference.

yes

no

no

Appendix B. POE environment variables and command-line flags 139

|
|
||
|
|
|

|
|
|
|
|
|
|

|

|

|

Table 16. POE environment variables and command-line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command-Line Flag Set: Possible Values: Default:

MP_EAGER_LIMIT

-eager_limit

To change the threshold value

for message size, above which

rendezvous protocol is used.

To ensure that at least 32

messages can be outstanding

between any two tasks,

MP_EAGER_LIMIT will be

adjusted based on the number

of tasks according to the

following table, when the user

has specified neither

MP_BUFFER_MEM nor

MP_EAGER_LIMIT:

Number of

Tasks MP_EAGER_LIMIT

 1 to 256 32768

 257 to 512 16384

 513 to 1024 8192

1025 to 2048 4096

2049 to 4096 2048

4097 to 8192 1024

The maximum value for

MP_EAGER_LIMIT is 256 KB

(262144 bytes). Any value that

is less than 64 bytes but greater

than zero bytes is automatically

increased to 64 bytes. A value

of zero bytes is valid, and

indicates that eager send mode

is not to be used for the job.

nnnnn

nnK (where:

K = 1024 bytes)

4096

MP_HINTS_FILTERED

-hints_filtered

To specify whether or not MPI

info objects reject hints (key and

value pairs) that are not

meaningful to the MPI

implementation.

yes

no

yes

MP_IONODEFILE

-ionodefile

To specify the name of a

parallel I/O node file — a text

file that lists the nodes that

should be handling parallel

I/O. Setting this variable

enables you to limit the number

of nodes that participate in

parallel I/O and guarantees

that all I/O operations are

performed on the same node.

See “Determining which nodes

will participate in parallel I/O”

on page 43 for more

information.

Any relative path name or full

path name.

None. All

nodes will

participate in

parallel I/O.

MP_MSG_ENVELOPE_BUF

-msg_envelope_buf

The size of the message

envelope buffer (that is,

uncompleted send and receive

descriptors).

Any positive number. There is

no upper limit, but any value

less than 1 MB is ignored.

8 MB

140 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|

|

Table 16. POE environment variables and command-line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command-Line Flag Set: Possible Values: Default:

MP_POLLING_INTERVAL

-polling_interval

To change the polling interval

(in microseconds).

An integer

between 1

and 2 billion

400000

MP_RETRANSMIT_INTERVAL

-retransmit_interval

MP_RETRANSMIT_

INTERVAL=nnnn and its

command line equivalent,

-retransmit_interval=nnnn,

control how often the

communication subsystem

library checks to see if it should

retransmit packets that have

not been acknowledged. The

value nnnn is the number of

polling loops between checks.

The acceptable range

is from 1000 to INT_MAX

10000 (IP)

400000

(User Space)

MP_LAPI_TRACE_LEVEL Used in conjunction with AIX

tracing for debug purposes.

Levels 0-5 are supported.

Levels 0-5 0

MP_USE_BULK_XFER

-use_bulk_xfer

Exploits the high performance

switch data transfer

mechanism. In other

environments, this variable

does not have any meaning and

is ignored.

Before you can use

MP_USE_BULK_XFER, the

system administrator must first

enable Remote Direct Memory

Access (RDMA). For more

information, see IBM Parallel

Environment for AIX: Installation.

In other environments, this

variable does not have any

meaning and is ignored.

Note that when you use this

environment variable, you also

need to consider the value of

the

MP_BULK_MIN_MSG_SIZE

environment variable. Messages

with lengths that are greater

than the value specified

MP_BULK_MIN_MSG_SIZE

will use the bulk transfer path,

if it is available. For more

information, see the entry for

MP_BULK_MIN_MSG_SIZE

in this table.

yes

no

no

Appendix B. POE environment variables and command-line flags 141

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 16. POE environment variables and command-line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command-Line Flag Set: Possible Values: Default:

MP_BULK_MIN_MSG_SIZE

-bulk_min_msg_size

Contiguous messages with data

lengths greater than or equal to

the value you specify for this

environment variable will use

the bulk transfer path, if it is

available. Messages with data

lengths that are smaller than

the value you specify for this

environment variable, or are

noncontiguous, will use packet

mode transfer.

The acceptable range is from

4096 to 2147483647 (INT_MAX).

Possible values:
nnnnn (byte)

nnnK (where: K = 1024 bytes)

nnM (where:

 M = 1024*1024 bytes)

nnG (where:

 G = 1 billion bytes)

153600

MP_SHARED_MEMORY

-shared_memory

To specify the use of shared

memory (instead of IP or the

high performance switch) for

message passing between tasks

running on the same node.

Note: In past releases, the

MP_SHM_CC environment

variable was used to enable or

disable the use of shared

memory for certain 64-bit MPI

collective communication

operations. Beginning with the

PE 4.2 release, this environment

variable has been removed. You

should now use

MP_SHARED_MEMORY to

enable shared memory for both

collective communication and

point-to-point routines. The

default setting for

MP_SHARED_MEMORY is

yes (enable shared memory).

yes

no

yes

MP_SINGLE_THREAD

-single_thread

To avoid lock overheads in a

program that is known to be

single-threaded. MPE_I

nonblocking collective, MPI-IO

and MPI one-sided are

unavailable if this variable is

set to yes. Results are

undefined if this variable is set

to yes with multiple application

message passing threads in use.

See IBM Parallel Environment for

AIX: MPI Programming Guide

for more information.

yes

no

no

MP_THREAD_STACKSIZE

-thread_stacksize

To specify the additional stack

size allocated for user

subroutines running on an MPI

service thread. If you do not

allocate enough space, the

program may encounter a

SIGSEGV exception or more

subtle failures.

nnnnn

nnnK (where:

K = 1024 bytes)

nnM (where:

M = 1024*1024 bytes)

0

142 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

||
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Table 16. POE environment variables and command-line flags for Message Passing Interface (MPI) (continued)

Environment Variable

Command-Line Flag Set: Possible Values: Default:

MP_TIMEOUT

None

To change the length of time (in

seconds) the communication

subsystem will wait for a

connection to be established

during message-passing

initialization.

If the SP security method is

″dce and compatibility″, you

may need to increase the

MP_TIMEOUT value to allow

POE to wait for the DCE

servers to respond (or timeout

if the servers are down).

An integer greater than 0 150

MP_UDP_PACKET_SIZE

-udp_packet_size

Allows the user to control the

packet size. Specify a positive

integer.

A positive integer Switch 64k,

otherwise 8k

MP_WAIT_MODE

-wait_mode

Set: To specify how a thread or

task behaves when it discovers

it is blocked, waiting for a

message to arrive.

nopoll

poll

sleep

yield

poll (for User

Space and IP)

MP_IO_BUFFER_SIZE

-io_buffer_size

To specify the default size of

the data buffer used by MPI-IO

agents.

An integer less than or equal

to 128 MB, in one of these

formats:

nnnnn

nnnK (where K=1024 bytes)

nnnM (where M=1024*1024

bytes)

The number of

bytes that

corresponds to

16 file blocks.

MP_IO_ERRLOG

-io_errlog

To specify whether or not to

turn on I/O error logging.

yes

no

no

MP_REXMIT_BUF_SIZE

-rexmit_buf_size

The maximum LAPI level

message size that will be

buffered locally, to more

quickly free up the user send

buffer. This sets the size of the

local buffers that will be

allocated to store such

messages, and will impact

memory usage, while

potentially improving

performance. The MPI

application message size

supported is smaller by, at

most, 32 bytes.

nnn bytes (where:

nnn > 0 bytes)

16352 bytes

MP_REXMIT_BUF_CNT

-rexmit_buf_cnt

The number of retransmit

buffers that will be allocated

per task. Each buffer is of size

MP_REXMIT_BUF_SIZE *

MP_REXMIT_BUF_CNT. This

count controls the number of

in-flight messages that can be

buffered to allow prompt return

of application send buffers.

nnn (where:

nnn > 0)

128

Appendix B. POE environment variables and command-line flags 143

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

MP_BUFFER_MEM details

Set:

To control the amount of memory PE MPI allows for the buffering of early arrival

message data. Message data that is sent without knowing if the receive is posted is

said to be sent eagerly. If the message data arrives before the receive is posted, this

is called an early arrival and must be buffered at the receive side.

There are two way this environment variable can be used:

1. To specify the pool size for memory to be allocated at MPI initialization time

and dedicated to buffering of early arrivals. Management of pool memory for

each early arrival is fast, which helps performance, but memory that is set

aside in this pool is not available for other uses. Eager sending is throttled by

PE MPI to be certain there will never be an early arrival that cannot fit within

the pool. (To throttle a car engine is to choke off its air and fuel intake by

lifting your foot from the gas pedal when you want to keep the car from going

faster than you can control).

2. To specify the pool size for memory to be allocated at MPI initialization time

and, with a second argument, an upper bound of memory to be used if the

pre-allocated pool is not sufficient. Eager sending is throttled to be certain there

will never be an early arrival that cannot fit within the upper bound. Any

early arrival will be stored in the pre-allocated pool using its faster memory

management if there is room, but if not, malloc and free will be used.

The constraints on eager send must be pessimistic because they must guarantee

an early arrival buffer no matter how the application behaves. Real applications

at large task counts may suffer performance loss due to pessimistic throttling of

eager sending, even though the application has only a modest need for early

arrival buffering.

Setting a higher bound allows more and larger messages to be sent eagerly. If

the application is well behaved, it is likely that the pre-allocated pool will

supply all the buffer space needed. If not, malloc and free will be used but

never beyond the stated upper bound.

Possible values:

nnnnn (byte)

nnnK (where: K = 1024 bytes)

nnM (where: M = 1024*1024 bytes)

nnG (where: G = 1 billion bytes)

Formats:

M1

M1,M2

,M2 (a comma followed by the M2 value)

M1 specifies the size of the pool to be allocated at initialization time. M1 must be

between 0 and 256 MB.

M2 specifies the upper bound of memory that PE MPI will allow to be used for

early arrival buffering in the most extreme case of sends without waiting receives.

PE MPI will throttle senders back to rendezvous protocol (stop trying to use eager

send) before allowing the early arrivals at a receive side to overflow the upper

bound.

144 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|

|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|

|
|

|
|
|
|
|

There is no limit enforced on the value you can specify for M2, but be aware that a

program that does not behave as expected has the potential to malloc this much

memory, and terminate if it is not available.

When MP_BUFFER_MEM is allowed to default, or is specified with a single

argument, M1, the upper bound is set to the pool size, and eager sending will be

throttled soon enough at each sender to ensure that the buffer pool cannot

overflow at any receive side. If M2 is smaller than M1, M2 is ignored.

The format that omits M1 is used to tell PE MPI to use its default size

pre-allocated pool, but set the upper bound as specified with M2. This removes the

need for a user to remember the default M1 value when the intention is to only

change the M2 value.

It is expected that only jobs with hundreds of task will have any need to set M2.

For most of these jobs, there will be an M1,M2 setting that eliminates the need for

PE MPI to throttle eager sends, while allowing all early arrivals that the

application actually creates to be buffered within the pre-allocated pool.

 Table 17. POE environment variables/command-line flags for corefile generation

The Environment

Variable/Command-
Line Flag(s): Set: Possible Values: Default:

MP_COREDIR

-coredir

Creates a separate directory for each

task’s core file.

Any valid directory name,

or ″none″ to bypass

creating a new directory.

coredir.taskid

MP_COREFILE_

FORMAT

-corefile_format

The format of corefiles generated when

processes terminate abnormally.

The string ″STDERR″ (to

specify that the lightweight

corefile information should

be written to standard

error) or any other string

(to specify the lightweight

corefile name).

If not

set/specified,

standard AIX

corefiles will be

generated.

MP_COREFILE_

SIGTERM

-corefile_sigterm

Determines if POE should generate a core

file when a SIGTERM signal is received.

Valid values are yes and no. If not set,

the default is no.

yes, no no

 Table 18. Other POE environment variables/command-line flags

The Environment

Variable/Command-Line

Flag(s): Set: Possible Values: Default:

MP_DBXPROMPTMOD (no

associated command-line

flag)

A modified dbx prompt. The dbx

prompt \n(dbx) is used by the pdbx

command as an indicator denoting

that a dbx subcommand has

completed. This environment

variable modifies that prompt. Any

value assigned to it will have a “.”

prepended and will then be inserted

in the \n(dbx) prompt between the

“x” and the “)”. This environment

variable is useful when the string

\n(dbx) is present in the output of

the program being debugged.

Any string. None

Appendix B. POE environment variables and command-line flags 145

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

Table 18. Other POE environment variables/command-line flags (continued)

The Environment

Variable/Command-Line

Flag(s): Set: Possible Values: Default:

MP_EUIDEVELOP

-euidevelop

Controls the level of parameter

checking during execution. Setting

this to yes enables some intertask

parameter checking which may help

uncover certain problems, but slows

execution. Normal mode does only

relatively inexpensive, local

parameter checking. Minimum

allows PE MPI to bypass even local

parameter checking on certain

performance critical calls.

yes (for “develop”), no or

nor (for “normal”), deb (for

“debug”) and min (for

“minimum”).

no

MP_STATISTICS

-statistics

Provides the ability to gather

communication statistics for User

Space jobs.

yes

no

print

no

MP_FENCE

(no associated

command-line flag)

A “fence” character string for

separating arguments you want

parsed by POE from those you do

not.

Any string. None

MP_NOARGLIST

(no associated

command-line flag)

Whether or not POE ignores the

argument list. If set to yes, POE will

not attempt to remove POE

command-line flags before passing

the argument list to the user’s

program.

yes no no

MP_PRIORITY

(no associated

command-line flag)

A dispatch priority class for

execution or a string of high/low

priority values. See IBM Parallel

Environment for AIX: Installation for

more information on dispatch

priority classes.

Any of the dispatch priority

classes set up by the system

administrator or a string of

high/low priority values in

the file /etc/poe.priority.

None

MP_PRINTENV

-printenv

Whether to produce a report of the

current settings of MPI environment

variables, across all tasks in a job. If

yes is specified, the MPI

environment variable information is

gathered at initialization time from

all tasks, and forwarded to task 0,

where the report is prepared. If a

script_name is specified, the script is

run on each node, and the output

script is forwarded to task 0 and

included in the report.

When a variable’s value is the same

for all tasks, it is printed only once.

If it is different for some tasks, an

asterisk (*) appears in the report

after the word ″Task″.

no Do not produce a

report of MPI

environment

variable settings.

yes Produce a report

of MPI

environment

variable settings.

script_name

Produce the report

(same as yes), then

run the script

specified here.

no

146 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

|
|
|
|
|
|
|
|
|
|
|

|
|
|

Table 18. Other POE environment variables/command-line flags (continued)

The Environment

Variable/Command-Line

Flag(s): Set: Possible Values: Default:

MP_UTE

To include the UTE (Unified Trace

Environment) library in the link step,

allowing the user to collect data

from the application using PE

Benchmarker. For more information,

see IBM Parallel Environment for AIX:

Operation and Use, Volume 2.

yes Include the UTE

library in the link

step.

no Do not include the

UTE library in the

link step.

no

Appendix B. POE environment variables and command-line flags 147

|
|
|
|
|
|
|
|

||
|
|

||
|
|

148 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Appendix C. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size.

Accessibility information

Accessibility information for IBM products is available online. Visit the IBM

Accessibility Center at:

http://www.ibm.com/able/

To request accessibility information, click Product accessibility information.

Using assistive technologies

Assistive technology products, such as screen readers, function with user

interfaces. Consult the assistive technology documentation for specific information

when using such products to access interfaces.

© Copyright IBM Corp. 1993, 2005 149

150 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1993, 2005 151

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Department LJEB/P905

2455 South Road

Poughkeepsie, NY 12601-5400

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

152 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

All implemented function in the PE MPI product is designed to comply with the

requirements of the Message Passing Interface Forum, MPI: A Message-Passing

Interface Standard. The standard is documented in two volumes, Version 1.1,

University of Tennessee, Knoxville, Tennessee, June 6, 1995 and MPI-2: Extensions to

the Message-Passing Interface, University of Tennessee, Knoxville, Tennessee, July 18,

1997. The second volume includes a section identified as MPI 1.2 with clarifications

and limited enhancements to MPI 1.1. It also contains the extensions identified as

MPI 2.0. The three sections, MPI 1.1, MPI 1.2 and MPI 2.0 taken together constitute

the current standard for MPI.

PE MPI provides support for all of MPI 1.1 and MPI 1.2. PE MPI also provides

support for all of the MPI 2.0 Enhancements, except the contents of the chapter

titled Process Creation and Management.

If you believe that PE MPI does not comply with the MPI standard for the portions

that are implemented, please contact IBM Service.

Trademarks

The following are trademarks of International Business Machines Corporation in

the United States, other countries, or both:

 AFS

 AIX

 AIX 5L

 AIXwindows®

 DFS

 IBM

 IBMLink™

 LoadLeveler

 POWER™

 POWER3

 POWER4

 POWER5

 pSeries

 RS/6000

 SP

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Notices 153

Other company, product, and service names may be trademarks or service marks

of others.

Acknowledgments

The PE Benchmarker product includes software developed by the Apache Software

Foundation, http://www.apache.org.

154 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Glossary

A

AFS. Andrew File System.

address. A value, possibly a character or group of

characters that identifies a register, a device, a

particular part of storage, or some other data source or

destination.

AIX. Abbreviation for Advanced Interactive Executive,

IBM’s licensed version of the UNIX operating system.

AIX is particularly suited to support technical

computing applications, including high-function

graphics and floating-point computations.

AIXwindows Environment/6000. A graphical user

interface (GUI) for the RS/6000. It has the following

components:

v A graphical user interface and toolkit based on

OSF/Motif

v Enhanced X-Windows, an enhanced version of the

MIT X Window System

v Graphics Library (GL), a graphical interface library

for the application programmer that is compatible

with Silicon Graphics’ GL interface.

API. Application programming interface.

application. The use to which a data processing

system is put; for example, a payroll application, an

airline reservation application.

argument. A parameter passed between a calling

program and a called program or subprogram.

attribute. A named property of an entity.

Authentication. The process of validating the identity

of a user or server.

Authorization. The process of obtaining permission to

perform specific actions.

B

bandwidth. The difference, expressed in hertz,

between the highest and the lowest frequencies of a

range of frequencies. For example, analog transmission

by recognizable voice telephone requires a bandwidth

of about 3000 hertz (3 kHz). The bandwidth of an

optical link designates the information-carrying

capacity of the link and is related to the maximum bit

rate that a fiber link can support.

blocking operation. An operation that does not

complete until the operation either succeeds or fails.

For example, a blocking receive will not return until a

message is received or until the channel is closed and

no further messages can be received.

breakpoint. A place in a program, specified by a

command or a condition, where the system halts

execution and gives control to the workstation user or

to a specified program.

broadcast operation. A communication operation

where one processor sends (or broadcasts) a message to

all other processors.

buffer. A portion of storage used to hold input or

output data temporarily.

C

C. A general-purpose programming language. It was

formalized by Uniforum in 1983 and the ANSI

standards committee for the C language in 1984.

C++. A general-purpose programming language that

is based on the C language. C++ includes extensions

that support an object-oriented programming

paradigm. Extensions include:

v strong typing

v data abstraction and encapsulation

v polymorphism through function overloading and

templates

v class inheritance.

chaotic relaxation. An iterative relaxation method that

uses a combination of the Gauss-Seidel and

Jacobi-Seidel methods. The array of discrete values is

divided into subregions that can be operated on in

parallel. The subregion boundaries are calculated using

the Jacobi-Seidel method, while the subregion interiors

are calculated using the Gauss-Seidel method. See also

Gauss-Seidel.

client. A function that requests services from a server

and makes them available to the user.

cluster. A group of processors interconnected through

a high-speed network that can be used for

high-performance computing.

Cluster 1600. See IBM Eserver Cluster 1600.

collective communication. A communication

operation that involves more than two processes or

tasks. Broadcasts, reductions, and the MPI_Allreduce

subroutine are all examples of collective

communication operations. All tasks in a communicator

must participate.

© Copyright IBM Corp. 1993, 2005 155

command alias. When using the PE command-line

debugger pdbx, you can create abbreviations for

existing commands using the pdbx alias command.

These abbreviations are known as command aliases.

Communication Subsystem (CSS). A component of

the Parallel System Support Programs that provides

software support for the high performance switch. CSS

provides two protocols: Internet Protocol (IP) for

LAN-based communication and User Space protocol as

a message passing interface that is optimized for

performance over the switch. See also Internet Protocol

and User Space.

communicator. An MPI object that describes the

communication context and an associated group of

processes.

compile. To translate a source program into an

executable program.

condition. One of a set of specified values that a data

item can assume.

control workstation. A workstation attached to the

RS/6000 SP that serves as a single point of control

allowing the administrator or operator to monitor and

manage the system using Parallel System Support

Programs.

core dump. A process by which the current state of a

program is preserved in a file. Core dumps are usually

associated with programs that have encountered an

unexpected, system-detected fault, such as a

Segmentation Fault or a severe user error. The current

program state is needed for the programmer to

diagnose and correct the problem.

core file. A file that preserves the state of a program,

usually just before a program is terminated for an

unexpected error. See also core dump.

current context. When using the pdbx debugger,

control of the parallel program and the display of its

data can be limited to a subset of the tasks belonging to

that program. This subset of tasks is called the current

context. You can set the current context to be a single

task, multiple tasks, or all the tasks in the program.

D

data decomposition. A method of breaking up (or

decomposing) a program into smaller parts to exploit

parallelism. One divides the program by dividing the

data (usually arrays) into smaller parts and operating

on each part independently.

data parallelism. Refers to situations where parallel

tasks perform the same computation on different sets of

data.

dbx. A symbolic command-line debugger that is often

provided with UNIX systems. The PE command-line

debugger pdbx is based on the dbx debugger.

debugger. A debugger provides an environment in

which you can manually control the execution of a

program. It also provides the ability to display the

program’ data and operation.

distributed shell (dsh). An Parallel System Support

Programs command that lets you issue commands to a

group of hosts in parallel. See IBM Parallel System

Support Programs for AIX: Command and Technical

Reference for details.

domain name. The hierarchical identification of a host

system (in a network), consisting of human-readable

labels, separated by decimal points.

DPCL target application. The executable program that

is instrumented by a Dynamic Probe Class Library

(DPCL) analysis tool. It is the process (or processes)

into which the DPCL analysis tool inserts probes. A

target application could be a serial or parallel program.

Furthermore, if the target application is a parallel

program, it could follow either the SPMD or the

MPMD model, and may be designed for either a

message-passing or a shared-memory system.

E

environment variable. (1) A variable that describes the

operating environment of the process. Common

environment variables describe the home directory,

command search path, and the current time zone. (2) A

variable that is included in the current software

environment and is therefore available to any called

program that requests it.

Ethernet. A baseband local area network (LAN) that

allows multiple stations to access the transmission

medium at will without prior coordination, avoids

contention by using carrier sense and deference, and

resolves contention by using collision detection and

delayed retransmission. Ethernet uses carrier sense

multiple access with collision detection (CSMA/CD).

event. An occurrence of significance to a task — the

completion of an asynchronous operation such as an

input/output operation, for example.

executable. A program that has been link-edited and

therefore can be run in a processor.

execution. To perform the actions specified by a

program or a portion of a program.

expression. In programming languages, a language

construct for computing a value from one or more

operands.

156 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

F

fairness. A policy in which tasks, threads, or processes

must be allowed eventual access to a resource for

which they are competing. For example, if multiple

threads are simultaneously seeking a lock, no set of

circumstances can cause any thread to wait indefinitely

for access to the lock.

FDDI. Fiber Distributed Data Interface.

Fiber Distributed Data Interface (FDDI). An

American National Standards Institute (ANSI) standard

for a local area network (LAN) using optical fiber

cables. An FDDI LAN can be up to 100 kilometers (62

miles) long, and can include up to 500 system units.

There can be up to 2 kilometers (1.24 miles) between

system units and concentrators.

file system. In the AIX operating system, the

collection of files and file management structures on a

physical or logical mass storage device, such as a

diskette or minidisk.

fileset. (1) An individually-installable option or

update. Options provide specific functions. Updates

correct an error in, or enhance, a previously installed

program. (2) One or more separately-installable,

logically-grouped units in an installation package. See

also licensed program and package.

foreign host. See remote host.

FORTRAN. One of the oldest of the modern

programming languages, and the most popular

language for scientific and engineering computations.

Its name is a contraction of FORmula TRANslation. The

two most common FORTRAN versions are FORTRAN

77, originally standardized in 1978, and FORTRAN 90.

FORTRAN 77 is a proper subset of FORTRAN 90.

function cycle. A chain of calls in which the first

caller is also the last to be called. A function that calls

itself recursively is not considered a function cycle.

functional decomposition. A method of dividing the

work in a program to exploit parallelism. The program

is divided into independent pieces of functionality,

which are distributed to independent processors. This

method is in contrast to data decomposition, which

distributes the same work over different data to

independent processors.

functional parallelism. Refers to situations where

parallel tasks specialize in particular work.

G

Gauss-Seidel. An iterative relaxation method for

solving Laplace’s equation. It calculates the general

solution by finding particular solutions to a set of

discrete points distributed throughout the area in

question. The values of the individual points are

obtained by averaging the values of nearby points.

Gauss-Seidel differs from Jacobi-Seidel in that, for the

i+1st iteration, Jacobi-Seidel uses only values calculated

in the ith iteration. Gauss-Seidel uses a mixture of

values calculated in the ith and i+1st iterations.

global max. The maximum value across all processors

for a given variable. It is global in the sense that it is

global to the available processors.

global variable. A variable defined in one portion of a

computer program and used in at least one other

portion of the computer program.

gprof. A UNIX command that produces an execution

profile of C, COBOL, FORTRAN, or Pascal programs.

The execution profile is in a textual and tabular format.

It is useful for identifying which routines use the most

CPU time. See the man page on gprof.

graphical user interface (GUI). A type of computer

interface consisting of a visual metaphor of a

real-world scene, often of a desktop. Within that scene

are icons, which represent actual objects, that the user

can access and manipulate with a pointing device.

GUI. Graphical user interface.

H

high performance switch. The high-performance

message-passing network of the RS/6000 SP that

connects all processor nodes.

HIPPI. High performance parallel interface.

hook. A pdbx command that lets you re-establish

control over all tasks in the current context that were

previously unhooked with this command.

home node. The node from which an application

developer compiles and runs his program. The home

node can be any workstation on the LAN.

host. A computer connected to a network that

provides an access method to that network. A host

provides end-user services.

host list file. A file that contains a list of host names,

and possibly other information, that was defined by the

application that reads it.

host name. The name used to uniquely identify any

computer on a network.

hot spot. A memory location or synchronization

resource for which multiple processors compete

excessively. This competition can cause a

disproportionately large performance degradation when

one processor that seeks the resource blocks, preventing

many other processors from having it, thereby forcing

them to become idle.

Glossary 157

I

IBM Eserver Cluster 1600. An IBM Eserver Cluster

1600 is any PSSP or CSM-managed cluster comprised of

POWER microprocessor based systems (including

RS/6000 SMPs, RS/6000 SP nodes, and pSeries SMPs).

IBM Parallel Environment (PE) for AIX. A licensed

program that provides an execution and development

environment for parallel C, C++, and FORTRAN

programs. It also includes tools for debugging,

profiling, and tuning parallel programs.

installation image. A file or collection of files that are

required in order to install a software product on a

RS/6000 workstation or on SP system nodes. These

files are in a form that allows them to be installed or

removed with the AIX installp command. See also

fileset, licensed program, and package.

Internet. The collection of worldwide networks and

gateways that function as a single, cooperative virtual

network.

Internet Protocol (IP). (1) The TCP/IP protocol that

provides packet delivery between the hardware and

user processes. (2) The SP switch library, provided with

the Parallel System Support Programs, that follows the

IP protocol of TCP/IP.

IP. Internet Protocol.

J

Jacobi-Seidel. See Gauss-Seidel.

K

Kerberos. A publicly available security and

authentication product that works with the Parallel

System Support Programs software to authenticate the

execution of remote commands.

kernel. The core portion of the UNIX operating

system that controls the resources of the CPU and

allocates them to the users. The kernel is

memory-resident, is said to run in kernel mode (in other

words, at higher execution priority level than user

mode), and is protected from user tampering by the

hardware.

L

Laplace’s equation. A homogeneous partial

differential equation used to describe heat transfer,

electric fields, and many other applications.

latency. The time interval between the instant when

an instruction control unit initiates a call for data

transmission, and the instant when the actual transfer

of data (or receipt of data at the remote end) begins.

Latency is related to the hardware characteristics of the

system and to the different layers of software that are

involved in initiating the task of packing and

transmitting the data.

licensed program. A collection of software packages

sold as a product that customers pay for to license. A

licensed program can consist of packages and file sets a

customer would install. These packages and file sets

bear a copyright and are offered under the terms and

conditions of a licensing agreement. See also fileset and

package.

lightweight corefiles. An alternative to standard AIX

corefiles. Corefiles produced in the Standardized

Lightweight Corefile Format provide simple process stack

traces (listings of function calls that led to the error)

and consume fewer system resources than traditional

corefiles.

LoadLeveler. A job management system that works

with POE to let users run jobs and match processing

needs with system resources, in order to make better

use of the system.

local variable. A variable that is defined and used

only in one specified portion of a computer program.

loop unrolling. A program transformation that makes

multiple copies of the body of a loop, also placing the

copies within the body of the loop. The loop trip count

and index are adjusted appropriately so the new loop

computes the same values as the original. This

transformation makes it possible for a compiler to take

additional advantage of instruction pipelining, data

cache effects, and software pipelining.

 See also optimization.

M

management domain . A set of nodes configured for

manageability by the Clusters Systems Management

(CSM) product. Such a domain has a management

server that is used to administer a number of managed

nodes. Only management servers have knowledge of

the whole domain. Managed nodes only know about

the servers managing them; they know nothing of each

other. Contrast with peer domain.

menu. A list of options displayed to the user by a

data processing system, from which the user can select

an action to be initiated.

message catalog. A file created using the AIX Message

Facility from a message source file that contains

application error and other messages, which can later

be translated into other languages without having to

recompile the application source code.

message passing. Refers to the process by which

parallel tasks explicitly exchange program data.

158 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Message Passing Interface (MPI). A standardized API

for implementing the message-passing model.

MIMD. Multiple instruction stream, multiple data

stream.

Multiple instruction stream, multiple data stream

(MIMD). A parallel programming model in which

different processors perform different instructions on

different sets of data.

MPMD. Multiple program, multiple data.

Multiple program, multiple data (MPMD). A parallel

programming model in which different, but related,

programs are run on different sets of data.

MPI. Message Passing Interface.

N

network. An interconnected group of nodes, lines, and

terminals. A network provides the ability to transmit

data to and receive data from other systems and users.

Network Information Services. A set of UNIX

network services (for example, a distributed service for

retrieving information about the users, groups, network

addresses, and gateways in a network) that resolve

naming and addressing differences among computers

in a network.

NIS. See Network Information Services.

node. (1) In a network, the point where one or more

functional units interconnect transmission lines. A

computer location defined in a network. (2) In terms of

the RS/6000 SP, a single location or workstation in a

network. An SP node is a physical entity (a processor).

node ID. A string of unique characters that identifies

the node on a network.

nonblocking operation. An operation, such as

sending or receiving a message, that returns

immediately whether or not the operation was

completed. For example, a nonblocking receive will not

wait until a message is sent, but a blocking receive will

wait. A nonblocking receive will return a status value

that indicates whether or not a message was received.

O

object code. The result of translating a computer

program to a relocatable, low-level form. Object code

contains machine instructions, but symbol names (such

as array, scalar, and procedure names), are not yet

given a location in memory. Contrast with source code.

optimization. A widely-used (though not strictly

accurate) term for program performance improvement,

especially for performance improvement done by a

compiler or other program translation software. An

optimizing compiler is one that performs extensive

code transformations in order to obtain an executable

that runs faster but gives the same answer as the

original. Such code transformations, however, can make

code debugging and performance analysis very difficult

because complex code transformations obscure the

correspondence between compiled and original source

code.

option flag. Arguments or any other additional

information that a user specifies with a program name.

Also referred to as parameters or command-line options.

P

package. A number of file sets that have been

collected into a single installable image of licensed

programs. Multiple file sets can be bundled together for

installing groups of software together. See also fileset

and licensed program.

parallelism. The degree to which parts of a program

may be concurrently executed.

parallelize. To convert a serial program for parallel

execution.

Parallel Operating Environment (POE). An execution

environment that smooths the differences between

serial and parallel execution. It lets you submit and

manage parallel jobs. It is abbreviated and commonly

known as POE.

parameter. (1) In FORTRAN, a symbol that is given a

constant value for a specified application. (2) An item

in a menu for which the operator specifies a value or

for which the system provides a value when the menu

is interpreted. (3) A name in a procedure that is used to

refer to an argument that is passed to the procedure. (4)

A particular piece of information that a system or

application program needs to process a request.

partition. (1) A fixed-size division of storage. (2) In

terms of the RS/6000 SP, a logical collection of nodes to

be viewed as one system or domain. System

partitioning is a method of organizing the SP system

into groups of nodes for testing or running different

levels of software of product environments.

Partition Manager. The component of the Parallel

Operating Environment (POE) that allocates nodes, sets

up the execution environment for remote tasks, and

manages distribution or collection of standard input

(STDIN), standard output (STDOUT), and standard

error (STDERR).

pdbx. The parallel, symbolic command-line debugging

facility of PE. pdbx is based on the dbx debugger and

has a similar interface.

Glossary 159

PE. The IBM Parallel Environment for AIX licensed

program.

peer domain. A set of nodes configured for high

availability by the RSCT configuration manager. Such a

domain has no distinguished or master node. All nodes

are aware of all other nodes, and administrative

commands can be issued from any node in the domain.

All nodes also have a consistent view of the domain

membership. Contrast with management domain.

performance monitor. A utility that displays how

effectively a system is being used by programs.

PID. Process identifier.

POE. Parallel Operating Environment.

pool. Groups of nodes on an SP system that are

known to LoadLeveler, and are identified by a pool

name or number.

point-to-point communication. A communication

operation that involves exactly two processes or tasks.

One process initiates the communication through a send

operation. The partner process issues a receive operation

to accept the data being sent.

procedure. (1) In a programming language, a block,

with or without formal parameters, whose execution is

invoked by means of a procedure call. (2) A set of

related control statements that cause one or more

programs to be performed.

process. A program or command that is actually

running the computer. It consists of a loaded version of

the executable file, its data, its stack, and its kernel data

structures that represent the process’s state within a

multitasking environment. The executable file contains

the machine instructions (and any calls to shared

objects) that will be executed by the hardware. A

process can contain multiple threads of execution.

 The process is created with a fork() system call and

ends using an exit() system call. Between fork and exit,

the process is known to the system by a unique process

identifier (PID).

 Each process has its own virtual memory space and

cannot access another process’s memory directly.

Communication methods across processes include

pipes, sockets, shared memory, and message passing.

prof. A utility that produces an execution profile of an

application or program. It is useful to identify which

routines use the most CPU time. See the man page for

prof.

profiling. The act of determining how much CPU

time is used by each function or subroutine in a

program. The histogram or table produced is called the

execution profile.

Program Marker Array. An X-Windows run time

monitor tool provided with Parallel Operating

Environment, used to provide immediate visual

feedback on a program’s execution.

pthread. A thread that conforms to the POSIX Threads

Programming Model.

R

reduced instruction-set computer. A computer that

uses a small, simplified set of frequently-used

instructions for rapid execution.

reduction operation. An operation, usually

mathematical, that reduces a collection of data by one

or more dimensions. For example, the arithmetic SUM

operation is a reduction operation that reduces an array

to a scalar value. Other reduction operations include

MAXVAL and MINVAL.

Reliable Scalable Cluster Technology. A set of

software components that together provide a

comprehensive clustering environment for AIX. RSCT is

the infrastructure used by a variety of IBM products to

provide clusters with improved system availability,

scalability, and ease of use.

remote host. Any host on a network except the one

where a particular operator is working.

remote shell (rsh). A command supplied with both

AIX and the Parallel System Support Programs that lets

you issue commands on a remote host.

RISC. See reduced instruction-set computer.

RSCT. See Reliable Scalable Cluster Technology.

RSCT peer domain. See peer domain.

S

shell script. A sequence of commands that are to be

executed by a shell interpreter such as the Bourne shell

(sh), the C shell (csh), or the Korn shell (ksh). Script

commands are stored in a file in the same format as if

they were typed at a terminal.

segmentation fault. A system-detected error, usually

caused by referencing an non-valid memory address.

server. A functional unit that provides shared services

to workstations over a network — a file server, a print

server, or a mail server, for example.

signal handling. A type of communication that is

used by message passing libraries. Signal handling

involves using AIX signals as an asynchronous way to

move data in and out of message buffers.

160 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Single program, multiple data (SPMD). A parallel

programming model in which different processors

execute the same program on different sets of data.

source code. The input to a compiler or assembler,

written in a source language. Contrast with object code.

source line. A line of source code.

SP. RS/6000 SP; a scalable system arranged in various

physical configurations, that provides a high-powered

computing environment.

SPMD. Single program, multiple data.

standard input (STDIN). In the AIX operating system,

the primary source of data entered into a command.

Standard input comes from the keyboard unless

redirection or piping is used, in which case standard

input can be from a file or the output from another

command.

standard output (STDOUT). In the AIX operating

system, the primary destination of data produced by a

command. Standard output goes to the display unless

redirection or piping is used, in which case standard

output can go to a file or to another command.

STDIN. Standard input.

STDOUT. Standard output.

stencil. A pattern of memory references used for

averaging. A 4-point stencil in two dimensions for a

given array cell, x(i,j), uses the four adjacent cells,

x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1).

subroutine. (1) A sequence of instructions whose

execution is invoked by a call. (2) A sequenced set of

instructions or statements that can be used in one or

more computer programs and at one or more points in

a computer program. (3) A group of instructions that

can be part of another routine or can be called by

another program or routine.

synchronization. The action of forcing certain points

in the execution sequences of two or more

asynchronous procedures to coincide in time.

system administrator. (1) The person at a computer

installation who designs, controls, and manages the use

of the computer system. (2) The person who is

responsible for setting up, modifying, and maintaining

the Parallel Environment.

System Data Repository. A component of the Parallel

System Support Programs software that provides

configuration management for the SP system. It

manages the storage and retrieval of system data across

the control workstation, file servers, and nodes.

T

target application. See DPCL target application.

task. A unit of computation analogous to an AIX

process.

thread. A single, separately dispatchable, unit of

execution. There can be one or more threads in a

process, and each thread is executed by the operating

system concurrently.

tracing. In PE, the collection of information about the

execution of the program. This information is

accumulated into a trace file that can later be examined.

tracepoint. Tracepoints are places in the program that,

when reached during execution, cause the debugger to

print information about the state of the program.

trace record. In PE, a collection of information about a

specific event that occurred during the execution of

your program. For example, a trace record is created

for each send and receive operation that occurs in your

program (this is optional and might not be

appropriate). These records are then accumulated into a

trace file that can later be examined.

U

unrolling loops. See loop unrolling.

user. (1) A person who requires the services of a

computing system. (2) Any person or any thing that

can issue or receive commands and message to or from

the information processing system.

User Space. A version of the message passing library

that is optimized for direct access to the high

performance switch, that maximizes the performance

capabilities of the SP hardware.

utility program. A computer program in general

support of computer processes; for example, a

diagnostic program, a trace program, a sort program.

utility routine. A routine in general support of the

processes of a computer; for example, an input routine.

V

variable. (1) In programming languages, a named

object that may take different values, one at a time. The

values of a variable are usually restricted to one data

type. (2) A quantity that can assume any of a given set

of values. (3) A name used to represent a data item

whose value can be changed while the program is

running. (4) A name used to represent data whose

value can be changed, while the program is running,

by referring to the name of the variable.

Glossary 161

view. (1) To display and look at data on screen. (2) A

special display of data, created as needed. A view

temporarily ties two or more files together so that the

combined files can be displayed, printed, or queried.

The user specifies the fields to be included. The

original files are not permanently linked or altered;

however, if the system allows editing, the data in the

original files will be changed.

X

X Window System. The UNIX industry’s graphics

windowing standard that provides simultaneous views

of several executing programs or processes on high

resolution graphics displays.

162 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Index

Special characters
-buffer_mem command-line flag 139,

143

-clock_source command-line flag 139

-css_interrupt command-line flag 139

-hints_filtered command-line flag 140

-instances command-line flag 114

-io_buffer_size command-line flag 143

-io_errlog command-line flag 143

-ionodefile command-line flag 140

-msg_api command-line flag 113, 134

-polling_interval command-line flag 141

-printenv command-line flag 146

-retransmit_interval command-line

flag 141

-shared_memory command-line

flag 120, 142

-single_thread command-line flag 142

-thread_stacksize command-line flag 142

-udp_packet_size command-line

flag 117, 143

-wait_mode command-line flag 121, 143

A
abbreviated names viii

accessibility 149

acknowledgments 154

acronyms for product names viii

AIX 1

allocating nodes 58

application 2

application programming interface

(API) 75

argument 35

attribute 51

authorized access 7

B
bandwidth 1

breakpoint 117

buffer 40

C
C 8

C shell 72

C++ 1

cancelling a POE job 57

checkpointing programs 44

cluster 1

collective communication 94

command-line flags
-buffer_mem 139

-clock_source 139

-css_interrupt 139

-eager_limit 140

-hints_filtered 140

command-line flags (continued)
-instances 114

-io_buffer_size 143

-io_errlog 143

-ionodefile 140

-msg_api 113, 134

-polling_interval 141

-printenv 146

-retransmit_interval 141

-rexmit_buf_cnt 143

-rexmit_buf_size 143

-shared_memory 120, 142

-single_thread 142

-thread_stacksize 142

-udp_packet_size 117, 143

-wait_mode 121, 143

command-line flags, POE 15, 131

commands, PE 81

Communication Subsystem (CSS) 2

communication subsystem library 2

compiling parallel programs 8

condition 70

conventions viii

core file generation 131

D
dbx 3

debugger 3

diagnostic information 131

disability 149

E
environment variables

MP_ACK_THRESH 117, 138

MP_BUFFER_MEM 139

MP_CLOCK_SOURCE 139

MP_CSS_INTERRUPT 139

MP_EAGER_LIMIT 140

MP_HINTS_FILTERED 140

MP_INSTANCES 114

MP_IO_BUFFER_SIZE 143

MP_IO_ERRLOG 143

MP_IONODEFILE 140

MP_MSG_API 113, 134

MP_POLLING_INTERVAL 141

MP_PRINTENV 146

MP_RETRANSMIT_INTERVAL 141

MP_REXMIT_BUF_CNT 143

MP_REXMIT_BUF_SIZE 143

MP_SHARED_MEMORY 120, 142

MP_SINGLE_THREAD 142

MP_THREAD_STACKSIZE 142

MP_TIMEOUT 143

MP_UDP_PACKET_SIZE 117, 143

MP_UTE 147

MP_WAIT_MODE 121, 143

environment variables, POE 15, 131

executable 7

executing parallel programs 7

execution 1

execution environment 10

F
file system 9

flag 8

flags, command-line
-buffer_mem 139

-clock_source 139

-css_interrupt 139

-eager_limit 140

-hints_filtered 140

-instances 114

-io_buffer_size 143

-io_errlog 143

-ionodefile 140

-msg_api 113, 134

-polling_interval 141

-printenv 146

-retransmit_interval 141

-rexmit_buf_cnt 143

-rexmit_buf_size 143

-shared_memory 120, 142

-single_thread 142

-thread_stacksize 142

-udp_packet_size 117, 143

-wait_mode 121, 143

Fortran 1

function 40, 57

G
gprof 4

H
home node 2

host list file 16

host name 16

I
IBM Parallel Environment for AIX 1

Internet Protocol (IP) 2

J
Job Specifications 131

K
kernel 12

killing a POE job 57

© Copyright IBM Corp. 1993, 2005 163

L
LAPI timeout 117

latency 1

LoadLeveler 58

LoadLeveler, submitting a batch POE job

to 68

LookAt message retrieval tool ix

Low-level Application Programming

Interface (LAPI) 2

M
message catalog 29

message passing 2

message passing call 2

Message Passing Interface (MPI) 2

message passing program 2

message passing routine 2

message retrieval tool, LookAt ix

miscellaneous environment variables and

flags 131

mixed system 1

MP_ACK_THRESH environment

variable 117, 138

MP_BUFFER_MEM environment

variable 139, 143

MP_CLOCK_SOURCE environment

variable 139

MP_CSS_INTERRUPT environment

variable 139

MP_HINTS_FILTERED environment

variable 140

MP_INSTANCES environment

variable 114

MP_IO_BUFFER_SIZE environment

variable 143

MP_IO_ERRLOG environment

variable 143

MP_IONODEFILE environment

variable 140

MP_MSG_API environment

variable 113, 134

MP_POLLING_INTERVAL environment

variable 141

MP_PRINTENV environment

variable 146

MP_RETRANSMIT_INTERVAL

environment variable 141

MP_SHARED_MEMORY environment

variable 120, 142

MP_SINGLE_THREAD environment

variable 142

MP_THREAD_STACKSIZE environment

variable 142

MP_TIMEOUT environment

variable 143

MP_UDP_PACKET_SIZE environment

variable 117, 143

MP_UTE environment variable 147

MP_WAIT_MODE environment

variable 121, 143

MPI 131

MPMD (Multiple Program Multiple

Data) 1

N
node 1

nonblocking operation 73

O
option 19

P
Parallel Environment (PE), overview 1,

4

parallel file copy utilities 76

Parallel Operating Environment (POE) 7

executing parallel programs 7

parallel profiling capability 4

parallel programs 7

compiling 8

controlling program execution 34, 52

executing 7

parallel task I/O 131

Parallel Utility Function 41

parallelizing 2

parameter 70

partition 1

Partition Manager 3, 131

pdbx 3

PE commands 81

mcp 81

mcpgath 83

mcpscat 87

mpamddir 91

mpcc 92

mpCC 94

mpiexec 96

mpxlf 97

mpxlf90 100

mpxlf95 103

pmarray 106

poeckpt 124

poerestart 127

POE
argument limits 36

commands file, loading nodes

individually using 30

commands file, reading job steps

from 32

compiling parallel programs 8

controlling program execution

using 34, 52

executing nonparallel programs

using 33

invoking executables in 27, 34

setting up execution environment 10

POE command-line flags 15, 131

-ack_thresh 138

-adapter_use 19, 132

-buffer_mem 109, 139

-bulk_min_msg_size 110, 142

-cc_scratch_buf 109

-clock_source 109, 139

-cmdfile 30, 32, 135

-coredir 145

-corefile_format 145

-corefile_format_sigterm 145

-cpu_use 19, 132

POE command-line flags (continued)
-css_interrupt 109, 139

-debug_notimeout 109, 138

-eager_limit 109, 140

-euidevelop 123, 131, 146

-euidevice 24, 132

-euilib 23, 132

-euilibpath 23, 132

-hfile 21, 133

-hints_filtered 110, 140

-hostfile 21, 133

-ilevel 131, 138

-infolevel 131, 138

-instances 114, 133

-io_buffer_size 110, 143

-io_errlog 110, 143

-ionodefile 140

-labelio 41, 136

-llfile 135

-msg_api 113, 134

-msg_envelope_buf 110

-newjob 31, 135

-nodes 134

-pgmmodel 28, 135

-pmdlog 116, 138

-polling_interval 110, 141

-printenv 116, 146

-procs 15, 133

-pulse 57, 133

-resd 22, 133

-retransmit_interval 110, 141

-retry 35, 133

-retrycount 35, 133

-rexmit_buf_cnt 110, 143

-rexmit_buf_size 110, 143

-rmpool 26, 134

-save_llfile 135

-savehostfile 20, 134

-shared_memory 120, 142

-single_thread 110, 142

-statistics 110, 116

-stdinmode 37, 137

-stdoutmode 40, 137

-task_affinity 136

-tasks_per_node 134

-thread_stacksize 110, 142

-udp_packet_size 110, 117, 143

-use_bulk_xfer 110, 141

-wait_mode 110, 121, 143

generating diagnostic logs using 42

labeling task output using 41

maintaining partition for multiple job

steps using 31

making POE wait for available nodes

using 35

managing standard input using 37

managing standard output using 39

setting number of task processes 15

setting the message reporting level

using 42

specifying a commands file using 30,

32

specifying a host list file 21

specifying adapter set for message

passing using 24

specifying additional error checking

using 34

164 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

POE command-line flags (continued)
specifying communication subsystem

library implementation using 23

specifying programming model

using 28

POE environment variables 15, 131

generating diagnostic logs using 42

labeling task output using 41

maintaining partition for multiple job

steps using 31

making POE ignore arguments

using 35

making POE wait for available nodes

using 35

managing standard input using 37

managing standard output using 39

MP_ACK_THRESH 117, 138

MP_ADAPTER_USE 19, 132

MP_BUFFER_MEM 117, 139

MP_BULK_MIN_MSG_SIZE 121, 142

MP_CC_SCRATCH_BUF 118

MP_CKPTDIR 34, 44, 126, 135

MP_CKPTFILE 34, 44, 126, 135

MP_CLOCK_SOURCE 118, 139

MP_CMDFILE 30, 32, 135

MP_COREDIR 145

MP_COREFILE_FORMAT 145

MP_COREFILE_SIGTERM 145

MP_CPU_USE 19, 132

MP_CSS_INTERRUPT 118, 139

MP_DBXPROMPTMOD 145

MP_DEBUG_INITIAL_STOP 117, 138

MP_DEBUG_NOTIMEOUT 117, 138

MP_EAGER_LIMIT 119, 140

MP_EUIDEVELOP 123, 146

MP_EUIDEVICE 12, 132

MP_EUILIB 11, 132

MP_EUILIBPATH 23, 132

MP_FENCE 123, 146

MP_HINTS_FILTERED 119, 140

MP_HOLD_STDIN 34, 137

MP_HOSTFILE 11, 128, 133

MP_INFOLEVEL 116, 138

MP_INSTANCES 114, 133

MP_IO_BUFFER_SIZE 122, 143

MP_IO_ERRLOG 122, 143

MP_IONODEFILE 140

MP_LABELIO 34, 136

MP_LAPI_TRACE_LEVEL 120

MP_LLFILE 128, 135

MP_MSG_API 113, 134

MP_MSG_ENVELOPE_BUF 120

MP_NEWJOB 31, 135

MP_NOARGLIST 123, 146

MP_NODES 134

MP_PGMMODEL 28, 135

MP_PMDLOG 116, 138

MP_POLLING_INTERVAL 120, 121,

141

MP_PRINTENV 116, 146

MP_PRIORITY 123, 146

MP_PROCS 10, 133

MP_PULSE 133

MP_REMOTEDIR 72, 134

MP_RESD 11, 133

MP_RETRANSMIT_INTERVAL 120,

121, 141

POE environment variables (continued)
MP_RETRY 34, 133

MP_RETRYCOUNT 34, 133

MP_REXMIT_BUF_CNT 122, 143

MP_REXMIT_BUF_SIZE 122, 143

MP_RMPOOL 12, 128, 134

MP_SAVE_LLFILE 135

MP_SAVEHOSTFILE 20, 134

MP_SHARED_MEMORY 120, 142

MP_SINGLE_THREAD 121, 142

MP_STATISTICS 116

MP_STDINMODE 34, 137

MP_STDOUTMODE 34, 137

MP_TASK_AFFINITY 34, 136

MP_TASKS_PER_NODE 134

MP_THREAD_STACKSIZE 121, 142

MP_TIMEOUT 113, 134, 143

MP_UDP_PACKET_SIZE 117, 143

MP_USE_BULK_XFER 120, 141

MP_UTE 147

MP_WAIT_MODE 121, 143

setting number of task processes 15

setting the message reporting level

using 42

specifying a commands file using 30,

32

specifying a host list file 21

specifying adapter set for message

passing using 24

specifying additional error checking

using 34

specifying communication subsystem

library implementation using 23

specifying programming model

using 28

process 33

prof 4

R
RDMA

Using RDMA
-use_bulk_xfer 76

MP_USE_BULK_XFER 76

remote node 3

restarting programs 44

S
serial program 2

shell script 3

source code 2

SPMD (Single Program Multiple Data) 1

standard error (STDERR) 37

standard input (STDIN) 37

standard output (STDOUT) 37

stopping a POE job 57

subroutine 7

system administrator 1

T
task 1

trademarks 153

U
user 7

User Space (US) 2

V
variable 3

variables, environment
MP_ACK_THRESH 117

MP_INSTANCES 114

MP_MSG_API 113

MP_SHARED_MEMORY 120

MP_UDP_PACKET_SIZE 117

MP_WAIT_MODE 121

Index 165

166 IBM PE for AIX 5L V4R2: Operation and Use, Vol. 1

Reader’s Comments– We’d like to hear from you

IBM Parallel Environment for AIX 5L

Operation and Use, Volume 1

Using the Parallel Operating Environment

Version 4 Release 2

 Publication No. SA22-7948-02

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SA22-7948-02

SA22-7948-02

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5765-D93

SA22-7948-02

	Contents
	Tables
	About this book
	Who should read this book
	How this book is organized
	Overview of contents

	Conventions and terminology used in this book
	Abbreviated names

	Prerequisite and related information
	Using LookAt to look up message explanations

	How to send your comments
	National language support (NLS)
	Summary of changes for Parallel Environment 4.2

	Chapter 1. Introduction
	PE Version 4 Release 2 migration information

	Chapter 2. Executing parallel programs
	Executing parallel programs using POE
	Step 1: Compile the program
	Step 2: Copy files to individual nodes
	Step 3: Set up the execution environment
	Step 3a: Set the MP_PROCS environment variable
	Step 3b: Create a host list file
	Step 3c: Set the MP_HOSTFILE environment variable
	Step 3d: Set the MP_RESD environment variable
	Step 3e: Set the MP_EUILIB environment variable
	Step 3f: Set the MP_EUIDEVICE environment variable
	Step 3g: Set the MP_MSG_API environment variable
	Step 3h: Set the MP_RMPOOL environment variable

	Step 4: Invoke the executable
	Invoking an SPMD program
	Invoking an MPMD program
	Loading a series of programs as job steps
	Invoking a nonparallel program on remote nodes

	Controlling program execution
	Specifying develop mode
	Making POE wait for processor nodes
	Making POE ignore arguments
	Making POE ignore the entire argument list
	Making POE ignore a portion of the argument list

	POE argument limits
	Managing standard input, output, and error
	Managing standard input (STDIN)
	Using MP_HOLD_STDIN
	Using redirected STDIN
	Scenario A
	Scenario B
	Scenario C
	Scenario D
	Managing standard output (STDOUT)
	Labeling message output
	Setting the message reporting level for standard error (STDERR)
	Generating a diagnostic log on remote nodes

	Determining which nodes will participate in parallel I/O
	Checkpointing and restarting programs
	Checkpointing file management

	Managing task affinity on large SMP nodes
	Running POE from a shell script

	POE user authorization
	Cluster based security
	AIX/DCE based security (compatibility)
	Using DCE user authorization
	Using AIX user authorization

	Using POE with MALLOCDEBUG
	Using POE with AIX large pages

	Chapter 3. Managing POE jobs
	Multi-task corefile
	Using MP_BUFFER_MEM
	Specifying the format of corefiles or suppressing corefile generation
	Generating standard AIX corefiles
	Generating corefiles for sigterm
	Writing corefile information to standard error
	Generating lightweight corefiles

	Stopping a POE job
	Cancelling and killing a POE job
	Detecting remote node failures
	Considerations for using the high performance switch interconnect
	Scenarios for allocating nodes with LoadLeveler
	Scenario 1: Explicit allocation
	Scenario 2: Implicit allocation
	Scenario 3: Implicit allocation

	Considerations for data striping, failover and recovery with PE
	Using failover and recovery
	Monitoring adapter status
	Requesting the use of multiple adapters
	Failover and recovery restrictions
	Data striping
	Communication and memory considerations

	Submitting a batch POE job using IBM LoadLeveler
	Submitting an interactive POE job using an IBM LoadLeveler command file
	Generating an output LoadLeveler job command file

	Running programs under the C shell
	Using MP_CSS_INTERRUPT
	Support for performance improvements
	Interrupt mode control

	Parallel file copy utilities
	Using RDMA
	Improving Application Scalability Performance
	POE priority adjustment co-scheduler
	AIX Dispatcher tuning

	Appendix A. Parallel environment commands
	mcp
	mcpgath
	mcpscat
	mpamddir
	mpcc_r
	mpCC_r
	mpiexec
	mpxlf_r
	mpxlf90_r
	mpxlf95_r
	poe
	poeckpt
	poekill
	poerestart

	Appendix B. POE environment variables and command-line flags
	MP_BUFFER_MEM details

	Appendix C. Accessibility
	Accessibility information
	Using assistive technologies

	Notices
	Trademarks
	Acknowledgments

	Glossary
	Index
	Reader's Comments– We'd like to hear from you

